High electromechanical coefficient kt2=19% thick ScAlN piezoelectric films for ultrasonic transducer in low frequency of 80 MHz

Ko Hei Sano, Rei Karasawa, Takahiko Yanagitani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Ultrasonic in the frequency ranges of 20-100 MHz is not well-developed because of less applications or less suitable piezoelectric materials as shown in Table I. In a photoacoustic imaging, PVDF are usually used for ultrasonic transducers in the 10-50 MHz band. However, their electromechanical coupling coefficient kt2 of 4% is not enough for the practical uses. To excite ultrasonic in the 20-100 MHz, 125 μm-25 μm thick piezoelectric film is required. It is difficult to fabricate such a thick piezoelectric film without a crack caused by the internal stress during the deposition. A film deposition technique can realize the piezoelectric layer on a complicated surface such as curved or concave surface, which is difficult in the case of the single crystal plate. In this study, we demonstrated high efficient 81 MHz ultrasonic generation by using 43 μm extremely thick ScAlN films.

Original languageEnglish
Title of host publication2017 IEEE International Ultrasonics Symposium, IUS 2017
PublisherIEEE Computer Society
ISBN (Electronic)9781538633830
DOIs
Publication statusPublished - 2017 Oct 31
Event2017 IEEE International Ultrasonics Symposium, IUS 2017 - Washington, United States
Duration: 2017 Sep 62017 Sep 9

Publication series

NameIEEE International Ultrasonics Symposium, IUS
ISSN (Print)1948-5719
ISSN (Electronic)1948-5727

Other

Other2017 IEEE International Ultrasonics Symposium, IUS 2017
Country/TerritoryUnited States
CityWashington
Period17/9/617/9/9

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'High electromechanical coefficient kt2=19% thick ScAlN piezoelectric films for ultrasonic transducer in low frequency of 80 MHz'. Together they form a unique fingerprint.

Cite this