High-rate denitrification and SS rejection by biofilm-electrode reactor (BER) combined with microfiltration

Michal Prosnansky, Yutaka Sakakibara, Masao Kuroda

Research output: Contribution to journalArticle

104 Citations (Scopus)

Abstract

In this study, a multi-cathode biofilm-electrode reactor (BER) combined with microfiltration (MF) was investigated using a laboratory-scale experimental apparatus for treatment of nitrate-contaminated water. The multi-cathode electrodes were composed of multiple-granular activated carbons (GACs). GACs attached to each cathode to enlarge surface area of electrodes and to attach bacteria quickly and firmly. In BER, H2 gas is produced by applying electric current, which serves as an electron donor in biological reduction of nitrate to N2 gas. Since some suspended solids were escaping from BER, MF membrane with plate modules and a pore size of 0.2μm was placed after BER. Experimental results demonstrated that it was possible to operate the multi-cathode BER with high denitrification rates and hydraulic retention time (HRT) as low as HRT=20min. The denitrification rate was enhanced by 3-60 times in comparison with former studies. MF membrane successfully rejected the bacteria escaping from BER, so that the effluent concentration of SS was kept below 1mg SS/l throughout the experiment. It was also possible to operate MF membrane at flux 2-9 times higher and pressure 2.5-31 times smaller than in former studies. This higher performance was mainly brought about by using biofilm and H2 gas as an electron donor. Also, an economic evaluation of BER/MF was included, showing the feasibility of this process. The present BER/MF process is considered advantageous for the enhanced treatment of nitrate-polluted groundwater.

Original languageEnglish
Pages (from-to)4801-4810
Number of pages10
JournalWater Research
Volume36
Issue number19
DOIs
Publication statusPublished - 2002 Nov

    Fingerprint

Keywords

  • BER
  • Denitrification
  • Electrolysis
  • Groundwater
  • Microfiltration
  • Multi-electrode system

ASJC Scopus subject areas

  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Cite this