TY - JOUR
T1 - High-temperature bulk metallic glasses developed by combinatorial methods
AU - Li, Ming Xing
AU - Zhao, Shao Fan
AU - Lu, Zhen
AU - Hirata, Akihiko
AU - Wen, Ping
AU - Bai, Hai Yang
AU - Chen, Ming Wei
AU - Schroers, Jan
AU - Liu, Yan Hui
AU - Wang, Wei Hua
N1 - Funding Information:
Acknowledgements We thank D. Q. Zhao and D. W. Ding for experimental assistance. This work was partly supported by the National Key Research and Development programme of China (grant number 2017YFB0701900), the MOST 973 programme (grant number 2015CB856800), the NSF of China (grant numbers 11790291 and 61888102), the Key Research programme of Frontier Sciences of the Chinese Academy of Sciences (grant number QYZDY-SSW-JSC017) and the Strategic Priority Research programme of the Chinese Academy of Sciences (grant number XDB30000000). J.S. is grateful for support by NSF DMR through award number 1609391 for the combinatorial fabrication and XRD mapping. Y.H.L. acknowledges funding from the National Science Fund for Distinguished Young Scholars of the NSF of China (grant number 51825104), the Hundred Talents programme of the Chinese Academy of Sciences and the National Thousand Young Talents programme of China.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/5/2
Y1 - 2019/5/2
N2 - Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3–8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9–11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir–Ni–Ta–(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6–8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15–17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.
AB - Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3–8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9–11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir–Ni–Ta–(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6–8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15–17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.
UR - http://www.scopus.com/inward/record.url?scp=85065199189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85065199189&partnerID=8YFLogxK
U2 - 10.1038/s41586-019-1145-z
DO - 10.1038/s41586-019-1145-z
M3 - Article
C2 - 31043727
AN - SCOPUS:85065199189
SN - 0028-0836
VL - 569
SP - 99
EP - 103
JO - Nature
JF - Nature
IS - 7754
ER -