Homogenous measurement during a circulation-water-based ultrahigh-speed Polymerase chain reaction and melting curve analysis device

Hideyuki Terazono, Kenji Matsuura, Hyonchol Kim, Hiroyuki Takei, Akihiro Hattori, Fumimasa Nomura, Kenji Yasuda*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Polymerase chain reaction (PCR) is an essential technique for almost all life science fields that amplifies few target DNA copies. We developed a rapid real-time microdroplet PCR device by rapid switching of two types of circulation hot water, a μL-sized droplet, and a thin film aluminum chip. Using this device, rapid PCR amplification was observed successfully and accomplished within 3min. By real-time PCR, many samples could be measured simultaneously. Moreover, melting curve analysis is essential for detecting differences of PCR amplicons in detail such as those related to nonspecific amplification, single nucleotide polymorphism, and genotyping methods. Thus, we developed a device that can be used for melting curve analysis using circulation water. From the obtained results, temperature homogeneity on the reaction plate was maintained during PCR and melting curve analysis using high-speed circulation water. The results indicate that this system can be applied to various life science fields.

Original languageEnglish
Article number06JM08
JournalJapanese journal of applied physics
Volume53
Issue number6 SPEC. ISSUE
DOIs
Publication statusPublished - 2014 Jun
Externally publishedYes

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Homogenous measurement during a circulation-water-based ultrahigh-speed Polymerase chain reaction and melting curve analysis device'. Together they form a unique fingerprint.

Cite this