Homotopy invariants of nonorientable 4-manifolds

Myung Ho Kim, Sadayoshi Kojima, Frank Raymond

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We define a Z4-quadratic function on π2 for nonorientable 4-manifolds and show that it is a homotopy invariant. We then use it to distinguish homotopy types of certain manifolds that arose from an analysis of toral action on nonorientable 4-manifolds.

Original languageEnglish
Pages (from-to)71-81
Number of pages11
JournalTransactions of the American Mathematical Society
Volume333
Issue number1
DOIs
Publication statusPublished - 1992 Jan 1
Externally publishedYes

Fingerprint

4-manifold
Homotopy
Invariant
Homotopy Type
Quadratic Function

Keywords

  • 4-manifold
  • Fundamental group
  • Homotopy equivalence

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Homotopy invariants of nonorientable 4-manifolds. / Kim, Myung Ho; Kojima, Sadayoshi; Raymond, Frank.

In: Transactions of the American Mathematical Society, Vol. 333, No. 1, 01.01.1992, p. 71-81.

Research output: Contribution to journalArticle

@article{4dac9221bcf64de992c70ffbd095e11c,
title = "Homotopy invariants of nonorientable 4-manifolds",
abstract = "We define a Z4-quadratic function on π2 for nonorientable 4-manifolds and show that it is a homotopy invariant. We then use it to distinguish homotopy types of certain manifolds that arose from an analysis of toral action on nonorientable 4-manifolds.",
keywords = "4-manifold, Fundamental group, Homotopy equivalence",
author = "Kim, {Myung Ho} and Sadayoshi Kojima and Frank Raymond",
year = "1992",
month = "1",
day = "1",
doi = "10.1090/S0002-9947-1992-1028758-1",
language = "English",
volume = "333",
pages = "71--81",
journal = "Transactions of the American Mathematical Society",
issn = "0002-9947",
publisher = "American Mathematical Society",
number = "1",

}

TY - JOUR

T1 - Homotopy invariants of nonorientable 4-manifolds

AU - Kim, Myung Ho

AU - Kojima, Sadayoshi

AU - Raymond, Frank

PY - 1992/1/1

Y1 - 1992/1/1

N2 - We define a Z4-quadratic function on π2 for nonorientable 4-manifolds and show that it is a homotopy invariant. We then use it to distinguish homotopy types of certain manifolds that arose from an analysis of toral action on nonorientable 4-manifolds.

AB - We define a Z4-quadratic function on π2 for nonorientable 4-manifolds and show that it is a homotopy invariant. We then use it to distinguish homotopy types of certain manifolds that arose from an analysis of toral action on nonorientable 4-manifolds.

KW - 4-manifold

KW - Fundamental group

KW - Homotopy equivalence

UR - http://www.scopus.com/inward/record.url?scp=84968519538&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84968519538&partnerID=8YFLogxK

U2 - 10.1090/S0002-9947-1992-1028758-1

DO - 10.1090/S0002-9947-1992-1028758-1

M3 - Article

AN - SCOPUS:84968519538

VL - 333

SP - 71

EP - 81

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

SN - 0002-9947

IS - 1

ER -