Homotopy types of one-dimensional Peano continua

Katsuya Eda

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

    Original languageEnglish
    Pages (from-to)27-42
    Number of pages16
    JournalFundamenta Mathematicae
    Volume209
    Issue number1
    DOIs
    Publication statusPublished - 2010

    Fingerprint

    Peano Continuum
    Homotopy Type
    Fundamental Group
    Homomorphism
    Change Point
    Continuous Map
    Homotopy
    Isomorphism
    Isomorphic

    Keywords

    • Fundamental group
    • One-dimensional
    • Peano continuum

    ASJC Scopus subject areas

    • Algebra and Number Theory

    Cite this

    Homotopy types of one-dimensional Peano continua. / Eda, Katsuya.

    In: Fundamenta Mathematicae, Vol. 209, No. 1, 2010, p. 27-42.

    Research output: Contribution to journalArticle

    Eda, Katsuya. / Homotopy types of one-dimensional Peano continua. In: Fundamenta Mathematicae. 2010 ; Vol. 209, No. 1. pp. 27-42.
    @article{2de431eb4d3e43b7ac365405bbc17596,
    title = "Homotopy types of one-dimensional Peano continua",
    abstract = "Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.",
    keywords = "Fundamental group, One-dimensional, Peano continuum",
    author = "Katsuya Eda",
    year = "2010",
    doi = "10.4064/fm209-1-3",
    language = "English",
    volume = "209",
    pages = "27--42",
    journal = "Fundamenta Mathematicae",
    issn = "0016-2736",
    publisher = "Instytut Matematyczny",
    number = "1",

    }

    TY - JOUR

    T1 - Homotopy types of one-dimensional Peano continua

    AU - Eda, Katsuya

    PY - 2010

    Y1 - 2010

    N2 - Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

    AB - Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

    KW - Fundamental group

    KW - One-dimensional

    KW - Peano continuum

    UR - http://www.scopus.com/inward/record.url?scp=79251509939&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=79251509939&partnerID=8YFLogxK

    U2 - 10.4064/fm209-1-3

    DO - 10.4064/fm209-1-3

    M3 - Article

    AN - SCOPUS:79251509939

    VL - 209

    SP - 27

    EP - 42

    JO - Fundamenta Mathematicae

    JF - Fundamenta Mathematicae

    SN - 0016-2736

    IS - 1

    ER -