Improving accuracy of Recommender System by item clustering

Khanhquan Truong, Fuyuki Ishikawa, Shinichi Honiden

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Recommender System (RS) predicts user's ratings towards items, and then recommends highly-predicted items to user. In recent years, RS has been playing more and more important role in the agent research field. There have been a great deal of researches trying to apply agent technology to RS. Collaborative Filtering, one of the most widely used approach to predict user's ratings in Recommender System, predicts a user's rating towards an item by aggregating ratings given by users who have similar preference to that user. In existing approaches, user similarity is often computed on the whole set of items. However, because the number of items is often very large and so is the diversity among items, users who have similar preference in one category may have totally different judgement on items of another kind. In order to deal with this problem, we propose a method to cluster items, so that inside a cluster, similarity between users does not change significantly from item to item. After the item clustering phase, when predicting rating of a user towards an item, we only aggregate ratings of users who have similarity preference to that user inside the cluster of that item. Experiments evaluating our approach are carried out on the real dataset taken from MovieLens, a movies recommendation web site. Experiment results suggest that our approach can improve prediction accuracy compared to existing approaches.

Original languageEnglish
Pages (from-to)1363-1373
Number of pages11
JournalIEICE Transactions on Information and Systems
VolumeE90-D
Issue number9
DOIs
Publication statusPublished - 2007 Sep
Externally publishedYes

Keywords

  • Collaborative Filtering
  • Item clustering
  • Recommender System

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Improving accuracy of Recommender System by item clustering'. Together they form a unique fingerprint.

  • Cite this