In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

ATLAS Collaboration

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb - 1  of s=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p T ). The precision of the relative jet energy scale is 1–2% for 200GeV<pT<2TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same p T range.

Original languageEnglish
Article number135
JournalEuropean Physical Journal C
Volume79
Issue number2
DOIs
Publication statusPublished - 2019 Feb 1

Fingerprint

Calibration
Detectors
collisions
radii
detectors
Momentum
transverse momentum
energy
Bosons
bosons
particle tracks
Charged particles
Calorimeters
calorimeters
charged particles
Photons
simulation
quarks
momentum
photons

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector. / ATLAS Collaboration.

In: European Physical Journal C, Vol. 79, No. 2, 135, 01.02.2019.

Research output: Contribution to journalArticle

@article{9f4a3ca50e2b4747b60b88f08dc41a27,
title = "In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector",
abstract = "The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb - 1  of s=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3{\%} higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p T ). The precision of the relative jet energy scale is 1–2{\%} for 200GeVT range.",
author = "{ATLAS Collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abhayasinghe, {D. K.} and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adam and L. Adamczyk and J. Adelman and M. Adersberger and A. Adiguzel and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and F. Ahmadov and G. Aielli and S. Akatsuka and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and Alconada Verzini, {M. J.} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and T. Alexopoulos and M. Alhroob and B. Ali and G. Alimonti and J. Alison and Alkire, {S. P.} and C. Allaire and Allbrooke, {B. M.M.} and Allen, {B. W.} and Allport, {P. P.} and Takashi Mitani and Masahiro Morinaga",
year = "2019",
month = "2",
day = "1",
doi = "10.1140/epjc/s10052-019-6632-8",
language = "English",
volume = "79",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

AU - ATLAS Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adam, L.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Alimonti, G.

AU - Alison, J.

AU - Alkire, S. P.

AU - Allaire, C.

AU - Allbrooke, B. M.M.

AU - Allen, B. W.

AU - Allport, P. P.

AU - Mitani, Takashi

AU - Morinaga, Masahiro

PY - 2019/2/1

Y1 - 2019/2/1

N2 - The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb - 1  of s=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p T ). The precision of the relative jet energy scale is 1–2% for 200GeVT range.

AB - The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb - 1  of s=13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p T ). The precision of the relative jet energy scale is 1–2% for 200GeVT range.

UR - http://www.scopus.com/inward/record.url?scp=85061476087&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85061476087&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-019-6632-8

DO - 10.1140/epjc/s10052-019-6632-8

M3 - Article

VL - 79

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 2

M1 - 135

ER -