Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain

Yoshimasa Sakamoto, Mitsuaki Yoshida, Kentaro Senba, Tony Hunter

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

The Wilms' tumor suppressor gene, WT1, encodes a transcription factor in the zinc finger family, which binds to GC-rich sequences and functions as transcriptional activator or repressor. The WT1 protein plays a crucial role in urogenital development in mammals and its function is thought to be conserved during vertebrate evolution. Although accumulating evidence suggests that WT1 regulates a subset of genes including growth factor and growth factor receptor genes, little is known about regulators or signal cascades that could modulate the function of WT1. In this study, we show that the WT1 protein expressed exogenously in fibroblasts was phosphorylated in vivo, and that treatment with forskolin, which activates the cAMP-dependent protein kinase (PKA) in vivo, induced phosphorylation of additional sites in WT1. We identified the forskolin-induced phosphorylation sites as Ser-365 and Ser-393, which lie in the zinc finger domain in zinc fingers 2 and 3, respectively, PKA phosphorylated WT1 at Ser-365 and Ser-393 in vitro, as well as at additional sites, and this phosphorylation abolished the DNA-binding activity of WT1 in vitro. Using WT1 mutants in which Ser-365 and Ser-393 were mutated to Ala individually and in combination, we showed that phosphorylation of these sites was critical for inhibition of DNA binding in vivo. Thus, coexpression of the PKA catalytic subunit with wild type WT1 reduced the level of WT1 DNA-binding activity detected in nuclear extracts, and decreased transcriptional repression activity in vivo. In contrast to wild type WT1, all of the phosphorylation site mutants retained significant DNA-binding activity and repression activity in the presence of PKA. Analysis of the mutants showed that phosphorylation of Ser-365 and Ser-395 had additive inhibitory effects on WT1 DNA-binding in vivo and that phosphorylation at both sites was required for neutralization of repression activity. Therefore, we conclude that PKA modulates the activity of WT1 in vivo through phosphorylation of Ser-365 and Ser-393, which inhibits DNA binding. This in turn results in a decrease in WT1 transcriptional repression. Our findings provide the first evidence that the function of WT1 can be modulated by its phosphorylation in vivo.

Original languageEnglish
Pages (from-to)2001-2012
Number of pages12
JournalOncogene
Volume15
Issue number17
Publication statusPublished - 1997
Externally publishedYes

Fingerprint

Wilms' Tumor Genes
Zinc Fingers
Cyclic AMP-Dependent Protein Kinases
Phosphorylation
DNA
Protein Kinases
Colforsin
GC Rich Sequence
Growth Factor Receptors
Tumor Suppressor Genes
Genes
Vertebrates
Mammals
Catalytic Domain
Intercellular Signaling Peptides and Proteins
Proteins
Transcription Factors
Fibroblasts

Keywords

  • DNA binding
  • Phosphorylation
  • Transcription factor
  • Tumor suppressor gene

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research
  • Genetics

Cite this

@article{cd8b690273b942e0b8435f66239f9a24,
title = "Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain",
abstract = "The Wilms' tumor suppressor gene, WT1, encodes a transcription factor in the zinc finger family, which binds to GC-rich sequences and functions as transcriptional activator or repressor. The WT1 protein plays a crucial role in urogenital development in mammals and its function is thought to be conserved during vertebrate evolution. Although accumulating evidence suggests that WT1 regulates a subset of genes including growth factor and growth factor receptor genes, little is known about regulators or signal cascades that could modulate the function of WT1. In this study, we show that the WT1 protein expressed exogenously in fibroblasts was phosphorylated in vivo, and that treatment with forskolin, which activates the cAMP-dependent protein kinase (PKA) in vivo, induced phosphorylation of additional sites in WT1. We identified the forskolin-induced phosphorylation sites as Ser-365 and Ser-393, which lie in the zinc finger domain in zinc fingers 2 and 3, respectively, PKA phosphorylated WT1 at Ser-365 and Ser-393 in vitro, as well as at additional sites, and this phosphorylation abolished the DNA-binding activity of WT1 in vitro. Using WT1 mutants in which Ser-365 and Ser-393 were mutated to Ala individually and in combination, we showed that phosphorylation of these sites was critical for inhibition of DNA binding in vivo. Thus, coexpression of the PKA catalytic subunit with wild type WT1 reduced the level of WT1 DNA-binding activity detected in nuclear extracts, and decreased transcriptional repression activity in vivo. In contrast to wild type WT1, all of the phosphorylation site mutants retained significant DNA-binding activity and repression activity in the presence of PKA. Analysis of the mutants showed that phosphorylation of Ser-365 and Ser-395 had additive inhibitory effects on WT1 DNA-binding in vivo and that phosphorylation at both sites was required for neutralization of repression activity. Therefore, we conclude that PKA modulates the activity of WT1 in vivo through phosphorylation of Ser-365 and Ser-393, which inhibits DNA binding. This in turn results in a decrease in WT1 transcriptional repression. Our findings provide the first evidence that the function of WT1 can be modulated by its phosphorylation in vivo.",
keywords = "DNA binding, Phosphorylation, Transcription factor, Tumor suppressor gene",
author = "Yoshimasa Sakamoto and Mitsuaki Yoshida and Kentaro Senba and Tony Hunter",
year = "1997",
language = "English",
volume = "15",
pages = "2001--2012",
journal = "Oncogene",
issn = "0950-9232",
publisher = "Nature Publishing Group",
number = "17",

}

TY - JOUR

T1 - Inhibition of the DNA-binding and transcriptional repression activity of the Wilms' tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain

AU - Sakamoto, Yoshimasa

AU - Yoshida, Mitsuaki

AU - Senba, Kentaro

AU - Hunter, Tony

PY - 1997

Y1 - 1997

N2 - The Wilms' tumor suppressor gene, WT1, encodes a transcription factor in the zinc finger family, which binds to GC-rich sequences and functions as transcriptional activator or repressor. The WT1 protein plays a crucial role in urogenital development in mammals and its function is thought to be conserved during vertebrate evolution. Although accumulating evidence suggests that WT1 regulates a subset of genes including growth factor and growth factor receptor genes, little is known about regulators or signal cascades that could modulate the function of WT1. In this study, we show that the WT1 protein expressed exogenously in fibroblasts was phosphorylated in vivo, and that treatment with forskolin, which activates the cAMP-dependent protein kinase (PKA) in vivo, induced phosphorylation of additional sites in WT1. We identified the forskolin-induced phosphorylation sites as Ser-365 and Ser-393, which lie in the zinc finger domain in zinc fingers 2 and 3, respectively, PKA phosphorylated WT1 at Ser-365 and Ser-393 in vitro, as well as at additional sites, and this phosphorylation abolished the DNA-binding activity of WT1 in vitro. Using WT1 mutants in which Ser-365 and Ser-393 were mutated to Ala individually and in combination, we showed that phosphorylation of these sites was critical for inhibition of DNA binding in vivo. Thus, coexpression of the PKA catalytic subunit with wild type WT1 reduced the level of WT1 DNA-binding activity detected in nuclear extracts, and decreased transcriptional repression activity in vivo. In contrast to wild type WT1, all of the phosphorylation site mutants retained significant DNA-binding activity and repression activity in the presence of PKA. Analysis of the mutants showed that phosphorylation of Ser-365 and Ser-395 had additive inhibitory effects on WT1 DNA-binding in vivo and that phosphorylation at both sites was required for neutralization of repression activity. Therefore, we conclude that PKA modulates the activity of WT1 in vivo through phosphorylation of Ser-365 and Ser-393, which inhibits DNA binding. This in turn results in a decrease in WT1 transcriptional repression. Our findings provide the first evidence that the function of WT1 can be modulated by its phosphorylation in vivo.

AB - The Wilms' tumor suppressor gene, WT1, encodes a transcription factor in the zinc finger family, which binds to GC-rich sequences and functions as transcriptional activator or repressor. The WT1 protein plays a crucial role in urogenital development in mammals and its function is thought to be conserved during vertebrate evolution. Although accumulating evidence suggests that WT1 regulates a subset of genes including growth factor and growth factor receptor genes, little is known about regulators or signal cascades that could modulate the function of WT1. In this study, we show that the WT1 protein expressed exogenously in fibroblasts was phosphorylated in vivo, and that treatment with forskolin, which activates the cAMP-dependent protein kinase (PKA) in vivo, induced phosphorylation of additional sites in WT1. We identified the forskolin-induced phosphorylation sites as Ser-365 and Ser-393, which lie in the zinc finger domain in zinc fingers 2 and 3, respectively, PKA phosphorylated WT1 at Ser-365 and Ser-393 in vitro, as well as at additional sites, and this phosphorylation abolished the DNA-binding activity of WT1 in vitro. Using WT1 mutants in which Ser-365 and Ser-393 were mutated to Ala individually and in combination, we showed that phosphorylation of these sites was critical for inhibition of DNA binding in vivo. Thus, coexpression of the PKA catalytic subunit with wild type WT1 reduced the level of WT1 DNA-binding activity detected in nuclear extracts, and decreased transcriptional repression activity in vivo. In contrast to wild type WT1, all of the phosphorylation site mutants retained significant DNA-binding activity and repression activity in the presence of PKA. Analysis of the mutants showed that phosphorylation of Ser-365 and Ser-395 had additive inhibitory effects on WT1 DNA-binding in vivo and that phosphorylation at both sites was required for neutralization of repression activity. Therefore, we conclude that PKA modulates the activity of WT1 in vivo through phosphorylation of Ser-365 and Ser-393, which inhibits DNA binding. This in turn results in a decrease in WT1 transcriptional repression. Our findings provide the first evidence that the function of WT1 can be modulated by its phosphorylation in vivo.

KW - DNA binding

KW - Phosphorylation

KW - Transcription factor

KW - Tumor suppressor gene

UR - http://www.scopus.com/inward/record.url?scp=0030665666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030665666&partnerID=8YFLogxK

M3 - Article

C2 - 9366517

AN - SCOPUS:0030665666

VL - 15

SP - 2001

EP - 2012

JO - Oncogene

JF - Oncogene

SN - 0950-9232

IS - 17

ER -