Integration of GNSS positioning and 3D map using particle filter

Taro Suzuki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

This paper proposes a novel positioning technique that can be used for vehicles and pedestrians in urban environments in which there are large global navigation satellite system (GNSS) positioning errors because of multipath signals. In GNSS positioning, invisible satellites that are obstructed by buildings emit reflection and diffraction signals, which are called non-line-of-sight (NLOS) multipath signals. These cause major positioning errors in GNSS positioning. Thus, to mitigate the NLOS multipath error, NLOS signals must be identified from all received GNSS signals. 3D environmental maps can be used to identify NLOS signals. In some studies, 3D maps are used to improve GNSS positioning accuracy. However, the previously proposed techniques need a long convergence time to estimate the user position. In this study, we propose a positioning technique that can directly combine GNSS pseudorange-based positioning and 3D environmental maps to improve the positioning accuracy in urban environments where NLOS causes major positioning errors. The key idea behind this paper is to estimate user position using likelihood of position hypotheses computed from GNSS pseudo-ranges which consists of only LOS signals. To determine the NLOS GNSS signals at the user position, it is in turn necessary to accurately predetermine the position before simulation; we solve this problem by using a particle filter. We combine two likelihood estimation methods to determine the likelihood of each particle. The first method uses the Mahalanobis distance and the second method uses the degree of matching of availability of LOS signals. Differing hypotheses of user position are represented by these particles, and for each of these, the likelihood can be evaluated using only the LOS pseudoranges determined from the 3D map. To confirm the effectiveness of the proposed technique, a positioning test was performed in a real-world urban-canyon environment. Using the proposed method, the distribution of the particles converged to within 1 m after 6 s and iterated resampling. In conclusion, our proposed method is suitable and effective for estimating accurate user positioning in urban canyons where conventional GNSS positioning can cause large positioning errors.

Original languageEnglish
Title of host publication29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016
PublisherInstitute of Navigation
Pages1296-1304
Number of pages9
Volume2
ISBN (Electronic)9781510834101
Publication statusPublished - 2016
Event29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016 - Portland, United States
Duration: 2016 Sep 122016 Sep 16

Other

Other29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016
CountryUnited States
CityPortland
Period16/9/1216/9/16

Fingerprint

Navigation
Satellites
Signal systems
cause
pedestrian
building
Diffraction
Availability
simulation

ASJC Scopus subject areas

  • Computer Science Applications
  • Software
  • Computer Networks and Communications
  • Communication
  • Information Systems
  • Electrical and Electronic Engineering

Cite this

Suzuki, T. (2016). Integration of GNSS positioning and 3D map using particle filter. In 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016 (Vol. 2, pp. 1296-1304). Institute of Navigation.

Integration of GNSS positioning and 3D map using particle filter. / Suzuki, Taro.

29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016. Vol. 2 Institute of Navigation, 2016. p. 1296-1304.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Suzuki, T 2016, Integration of GNSS positioning and 3D map using particle filter. in 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016. vol. 2, Institute of Navigation, pp. 1296-1304, 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016, Portland, United States, 16/9/12.
Suzuki T. Integration of GNSS positioning and 3D map using particle filter. In 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016. Vol. 2. Institute of Navigation. 2016. p. 1296-1304
Suzuki, Taro. / Integration of GNSS positioning and 3D map using particle filter. 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016. Vol. 2 Institute of Navigation, 2016. pp. 1296-1304
@inproceedings{0d8e0a97076b46819e405a2abc3c8694,
title = "Integration of GNSS positioning and 3D map using particle filter",
abstract = "This paper proposes a novel positioning technique that can be used for vehicles and pedestrians in urban environments in which there are large global navigation satellite system (GNSS) positioning errors because of multipath signals. In GNSS positioning, invisible satellites that are obstructed by buildings emit reflection and diffraction signals, which are called non-line-of-sight (NLOS) multipath signals. These cause major positioning errors in GNSS positioning. Thus, to mitigate the NLOS multipath error, NLOS signals must be identified from all received GNSS signals. 3D environmental maps can be used to identify NLOS signals. In some studies, 3D maps are used to improve GNSS positioning accuracy. However, the previously proposed techniques need a long convergence time to estimate the user position. In this study, we propose a positioning technique that can directly combine GNSS pseudorange-based positioning and 3D environmental maps to improve the positioning accuracy in urban environments where NLOS causes major positioning errors. The key idea behind this paper is to estimate user position using likelihood of position hypotheses computed from GNSS pseudo-ranges which consists of only LOS signals. To determine the NLOS GNSS signals at the user position, it is in turn necessary to accurately predetermine the position before simulation; we solve this problem by using a particle filter. We combine two likelihood estimation methods to determine the likelihood of each particle. The first method uses the Mahalanobis distance and the second method uses the degree of matching of availability of LOS signals. Differing hypotheses of user position are represented by these particles, and for each of these, the likelihood can be evaluated using only the LOS pseudoranges determined from the 3D map. To confirm the effectiveness of the proposed technique, a positioning test was performed in a real-world urban-canyon environment. Using the proposed method, the distribution of the particles converged to within 1 m after 6 s and iterated resampling. In conclusion, our proposed method is suitable and effective for estimating accurate user positioning in urban canyons where conventional GNSS positioning can cause large positioning errors.",
author = "Taro Suzuki",
year = "2016",
language = "English",
volume = "2",
pages = "1296--1304",
booktitle = "29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016",
publisher = "Institute of Navigation",
address = "United States",

}

TY - GEN

T1 - Integration of GNSS positioning and 3D map using particle filter

AU - Suzuki, Taro

PY - 2016

Y1 - 2016

N2 - This paper proposes a novel positioning technique that can be used for vehicles and pedestrians in urban environments in which there are large global navigation satellite system (GNSS) positioning errors because of multipath signals. In GNSS positioning, invisible satellites that are obstructed by buildings emit reflection and diffraction signals, which are called non-line-of-sight (NLOS) multipath signals. These cause major positioning errors in GNSS positioning. Thus, to mitigate the NLOS multipath error, NLOS signals must be identified from all received GNSS signals. 3D environmental maps can be used to identify NLOS signals. In some studies, 3D maps are used to improve GNSS positioning accuracy. However, the previously proposed techniques need a long convergence time to estimate the user position. In this study, we propose a positioning technique that can directly combine GNSS pseudorange-based positioning and 3D environmental maps to improve the positioning accuracy in urban environments where NLOS causes major positioning errors. The key idea behind this paper is to estimate user position using likelihood of position hypotheses computed from GNSS pseudo-ranges which consists of only LOS signals. To determine the NLOS GNSS signals at the user position, it is in turn necessary to accurately predetermine the position before simulation; we solve this problem by using a particle filter. We combine two likelihood estimation methods to determine the likelihood of each particle. The first method uses the Mahalanobis distance and the second method uses the degree of matching of availability of LOS signals. Differing hypotheses of user position are represented by these particles, and for each of these, the likelihood can be evaluated using only the LOS pseudoranges determined from the 3D map. To confirm the effectiveness of the proposed technique, a positioning test was performed in a real-world urban-canyon environment. Using the proposed method, the distribution of the particles converged to within 1 m after 6 s and iterated resampling. In conclusion, our proposed method is suitable and effective for estimating accurate user positioning in urban canyons where conventional GNSS positioning can cause large positioning errors.

AB - This paper proposes a novel positioning technique that can be used for vehicles and pedestrians in urban environments in which there are large global navigation satellite system (GNSS) positioning errors because of multipath signals. In GNSS positioning, invisible satellites that are obstructed by buildings emit reflection and diffraction signals, which are called non-line-of-sight (NLOS) multipath signals. These cause major positioning errors in GNSS positioning. Thus, to mitigate the NLOS multipath error, NLOS signals must be identified from all received GNSS signals. 3D environmental maps can be used to identify NLOS signals. In some studies, 3D maps are used to improve GNSS positioning accuracy. However, the previously proposed techniques need a long convergence time to estimate the user position. In this study, we propose a positioning technique that can directly combine GNSS pseudorange-based positioning and 3D environmental maps to improve the positioning accuracy in urban environments where NLOS causes major positioning errors. The key idea behind this paper is to estimate user position using likelihood of position hypotheses computed from GNSS pseudo-ranges which consists of only LOS signals. To determine the NLOS GNSS signals at the user position, it is in turn necessary to accurately predetermine the position before simulation; we solve this problem by using a particle filter. We combine two likelihood estimation methods to determine the likelihood of each particle. The first method uses the Mahalanobis distance and the second method uses the degree of matching of availability of LOS signals. Differing hypotheses of user position are represented by these particles, and for each of these, the likelihood can be evaluated using only the LOS pseudoranges determined from the 3D map. To confirm the effectiveness of the proposed technique, a positioning test was performed in a real-world urban-canyon environment. Using the proposed method, the distribution of the particles converged to within 1 m after 6 s and iterated resampling. In conclusion, our proposed method is suitable and effective for estimating accurate user positioning in urban canyons where conventional GNSS positioning can cause large positioning errors.

UR - http://www.scopus.com/inward/record.url?scp=85017312874&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85017312874&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:85017312874

VL - 2

SP - 1296

EP - 1304

BT - 29th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS 2016

PB - Institute of Navigation

ER -