Integration of Speech Separation, Diarization, and Recognition for Multi-Speaker Meetings: System Description, Comparison, and Analysis

Desh Raj, Pavel Denisov, Zhuo Chen, Hakan Erdogan, Zili Huang, Maokui He, Shinji Watanabe, Jun Du, Takuya Yoshioka, Yi Luo, Naoyuki Kanda, Jinyu Li, Scott Wisdom, John R. Hershey

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Multi-speaker speech recognition of unsegmented recordings has diverse applications such as meeting transcription and automatic subtitle generation. With technical advances in systems dealing with speech separation, speaker diarization, and automatic speech recognition (ASR) in the last decade, it has become possible to build pipelines that achieve reasonable error rates on this task. In this paper, we propose an end-to-end modular system for the LibriCSS meeting data, which combines independently trained separation, diarization, and recognition components, in that order. We study the effect of different state-of-the-art methods at each stage of the pipeline, and report results using task-specific metrics like SDR and DER, as well as downstream WER. Experiments indicate that the problem of overlapping speech for diarization and ASR can be effectively mitigated with the presence of a well-trained separation module. Our best system achieves a speaker-attributed WER of 12.7%, which is close to that of a non-overlapping ASR.

Original languageEnglish
Title of host publication2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages897-904
Number of pages8
ISBN (Electronic)9781728170664
DOIs
Publication statusPublished - 2021 Jan 19
Externally publishedYes
Event2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Virtual, Shenzhen, China
Duration: 2021 Jan 192021 Jan 22

Publication series

Name2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings

Conference

Conference2021 IEEE Spoken Language Technology Workshop, SLT 2021
Country/TerritoryChina
CityVirtual, Shenzhen
Period21/1/1921/1/22

Keywords

  • Speech separation
  • diarization
  • multi-speaker
  • speech recognition

ASJC Scopus subject areas

  • Linguistics and Language
  • Language and Linguistics
  • Artificial Intelligence
  • Computer Science Applications
  • Computer Vision and Pattern Recognition
  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Integration of Speech Separation, Diarization, and Recognition for Multi-Speaker Meetings: System Description, Comparison, and Analysis'. Together they form a unique fingerprint.

Cite this