Intergalactic dust and its photoelectric heating

Akio K. Inoue, Hideyuki Kamaya

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


We have examined dust photoelectric heating in the intergalactic medium (IGM). The heating rate in a typical radiation field of the IGM is represented by Tpe = 1.2 x 10-34 erg s-1 cm-3 (P/10-4)(72h/10-5 cm-3)4/3(J L/10-21 ergs-1 cm-2 Hz-1 sr-1)2/3(T/104 K)-1/6, where D is the dust-to-gas mass ratio, nh is the hydrogen number density, Jl is the mean intensity at the hydrogen Lyman limit of the background radiation, and T is the gas temperature, if we assume the new X-ray photoelectric yield model by Weingartner et al. (2006) and the dust size distribution in the Milky Way by Mathis et al. (1977). This heating rate dominates the HI and Hell photoionization heating rates when the hydrogen number density is less than ∼10-6 cm-3 if D = 10-4 which is 1% of that in the Milky Way, although the heating rate is a factor of 2-4 smaller than that with the old yield model by Weingartner and Draine (2001). The grain size distribution is very important. If only large (≥0.1 μm) grains exist in the IGM, the heating rate is reduced by a factor of ≃5. Since dust heating is more efficient in a lower density medium relative to the photoionization heating, it may cause an inverted temperature-density relation in the low-density IGM, as suggested by Bolton et al. (2008). Finally, we have found that dust heating is not very important in the mean IGM before the cosmic reionization.

Original languageEnglish
Pages (from-to)69-79
Number of pages11
JournalEarth, Planets and Space
Issue number1
Publication statusPublished - 2010
Externally publishedYes


  • Dust grains
  • Intergalactic medium
  • Photo-electron
  • Photo-ionization

ASJC Scopus subject areas

  • Geology
  • Space and Planetary Science


Dive into the research topics of 'Intergalactic dust and its photoelectric heating'. Together they form a unique fingerprint.

Cite this