Interleukin-1β and interleukin-6 affect electrophysiological properties of thalamic relay cells

Vinicius Nikolaos Samios, Takafumi Inoue

    Research output: Contribution to journalArticle

    3 Citations (Scopus)

    Abstract

    By acknowledging the relation between brain and body in health and disease, inflammatory processes may play a key role in this reciprocal relation. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) are some of the agents involved in those processes. What exactly is their role in the CNS however is not that clear so far. To address the question of how pro-inflammatory cytokines may affect information processing at the cellular and molecular levels, relay neurons in the thalamic dorsal lateral geniculate nucleus in mouse brain slices were exposed to those cytokines and studied with the patch-clamp technique. IL-1β promoted hyperpolarization of the resting membrane potential (Vrest), decrease of input resistance (Rin), decrease of Ih rectification, decrease in action potential (AP) threshold and decrease in the number of APs in low threshold calcium spike (LTS) bursts, while IL-6 promoted decrease of Rin and decrease in the number of APs in LTS bursts. Computer simulations provided candidates for ionic conductance affected by those cytokines. Collectively, these findings demonstrate that IL-1β and IL-6 have modulatory effects on electrophysiological properties of thalamic neurons, implying that the thalamic functions may be affected by systemic disorders that present with high levels of those cytokines.

    Original languageEnglish
    Pages (from-to)16-25
    Number of pages10
    JournalNeuroscience Research
    Volume87
    Issue numberC
    DOIs
    Publication statusPublished - 2014

      Fingerprint

    Keywords

    • IL-1β
    • IL-6
    • Interleukin
    • Patch-clamp
    • Thalamic relay cell

    ASJC Scopus subject areas

    • Neuroscience(all)

    Cite this