Learning Multiple Sensorimotor Units to Complete Compound Tasks using an RNN with Multiple Attractors

Kei Kase, Ryoichi Nakajo, Hiroki Mori, Tetsuya Ogata

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

As the complexity of the robot's tasks increases, we can consider many general tasks in a compound form that consists of shorter tasks. Therefore, for robots to generate various tasks, they need to be able to execute shorter tasks in succession, appropriately to the situation. With the design principle to construct the architecture for robots to execute complex tasks compounded with multiple subtasks, this study proposes a visuomotor-control framework with the characteristics of a state machine to train shorter tasks as sensorimotor units. The design procedure of training framework consists of 4 steps: (1) segment entire task into appropriate subtasks, (2) define subtasks as states and transitions in a state machine, (3) collect subtasks data, and (4) train neural networks: (a) autoencoder to extract visual features, (b) a single recurrent neural network to generate subtasks to realize a pseud-state-machine model with a constraint in hidden values. We implemented this framework on two different robots to allow their performance of repetitive tasks with error-recovery motion, subsequently, confirming the ability of the robot to switch the sensorimotor units from visual input at the attractors of the hidden values created by the constraint.

Original languageEnglish
Title of host publication2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4244-4249
Number of pages6
ISBN (Electronic)9781728140049
DOIs
Publication statusPublished - 2019 Nov
Event2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 - Macau, China
Duration: 2019 Nov 32019 Nov 8

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
CountryChina
CityMacau
Period19/11/319/11/8

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Learning Multiple Sensorimotor Units to Complete Compound Tasks using an RNN with Multiple Attractors'. Together they form a unique fingerprint.

Cite this