Lifetime prediction of woven GFRP laminates under constant tensile loading in hydrothermal environment

Masahiro Kotani*, Yusuke Yasufuku, Naoki Inoue, Ken Kurihara, Hiroyuki Kawada

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study aims to investigate the effects of a hydrothermal environment on the creep behavior of woven glass fiber reinforced plastics (GFRPs) and to propose a method for predicting their lifetime. Toward this end, experiments were carried out in air and deionized water at 40, 60, 80 and 95 °C. Static tensile tests of woven GFRP were conducted in air and in deionized water to evaluate its mechanical properties and to determine suitable experimental conditions for subsequent constant tensile load tests. The mechanical properties of the woven GFRP decreased with an increase in temperature and with water immersion. Constant tensile load tests were also conducted in air and in deionized water to investigate the creep behavior and fracture time. The fracture time decreased with an increase in stress and water temperature and demonstrated the possibility of a threshold stress for fracturing. In addition, the fracture time during each constant tensile load test was predicted using a modified Reiner-Weissenberg (R-W) criterion, which is a failure criterion for linear viscoelastic materials based on the accumulation of dissolved energy within the GFRP. In this study, the R-W criterion was modified to consider the effects of degradation and its acceleration, which are due to the applied stress and immersion in a solution. The predicted results were in good agreement with the experimental data when considering the effects of hydrothermal aging.

Original languageEnglish
Pages (from-to)261-274
Number of pages14
JournalMechanics of Time-Dependent Materials
Volume17
Issue number2
DOIs
Publication statusPublished - 2013 May

Keywords

  • Constant Tensile Load Test
  • Creep
  • GFRP
  • Hydrothermal Environment
  • Lifetime Prediction

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Materials Science(all)
  • Aerospace Engineering
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Lifetime prediction of woven GFRP laminates under constant tensile loading in hydrothermal environment'. Together they form a unique fingerprint.

Cite this