TY - JOUR
T1 - Light-dependent structural change of chicken retinal cryptochrome4
AU - Watari, Ryuji
AU - Yamaguchi, Chiaki
AU - Zemba, Wataru
AU - Kubo, Yoko
AU - Okano, Keiko
AU - Okano, Toshiyuki
PY - 2012/12/14
Y1 - 2012/12/14
N2 - Animals have several classes of cryptochromes (CRYs), some of which function as core elements of circadian clockwork, circadian photoreceptors, and/or light-dependent magnetoreceptors. In addition to the circadian clock genes Cry1 and Cry2, nonmammalian vertebrates have the Cry4 gene, the molecular function of which remains unknown. Here we analyzed chicken CRY4 (cCRY4) expression in the retina with in situ hybridization and found that cCRY4 was likely transcribed in the visual pigment cells, cells in the inner nuclear layer, and retinal ganglion cells. We further developed several monoclonal antibodies to the carboxyl-terminal extension of cCRY4 and localized cCRY4 protein with immunohistochemistry. Consistent with the results of in situ hybridization, cCRY4 immunoreactivity was found in visual pigment cells and cells located at the inner nuclear layer and the retinal ganglion cell layer. Among the antibodies, one termed C1-mAb had its epitope within the carboxylterminal 14-amino acid sequence (QLTRDDADDPMEMK) and associated with cCRY4 in the retinal soluble fraction more strongly in the dark than under blue light conditions. Immunoprecipitation experiments under various light conditions indicated that cCRY4 from the immunocomplex formed in the dark dissociated from C1-mAb during blue light illumination as weak as 25 μW/cm2 and that the release occurred with not only blue but also near UV light. These results suggest that cCRY4 reversibly changes its structure within the carboxyl-terminal region in a light-dependent manner and operates as a photoreceptor or magnetoreceptor with short wavelength sensitivity in the retina.
AB - Animals have several classes of cryptochromes (CRYs), some of which function as core elements of circadian clockwork, circadian photoreceptors, and/or light-dependent magnetoreceptors. In addition to the circadian clock genes Cry1 and Cry2, nonmammalian vertebrates have the Cry4 gene, the molecular function of which remains unknown. Here we analyzed chicken CRY4 (cCRY4) expression in the retina with in situ hybridization and found that cCRY4 was likely transcribed in the visual pigment cells, cells in the inner nuclear layer, and retinal ganglion cells. We further developed several monoclonal antibodies to the carboxyl-terminal extension of cCRY4 and localized cCRY4 protein with immunohistochemistry. Consistent with the results of in situ hybridization, cCRY4 immunoreactivity was found in visual pigment cells and cells located at the inner nuclear layer and the retinal ganglion cell layer. Among the antibodies, one termed C1-mAb had its epitope within the carboxylterminal 14-amino acid sequence (QLTRDDADDPMEMK) and associated with cCRY4 in the retinal soluble fraction more strongly in the dark than under blue light conditions. Immunoprecipitation experiments under various light conditions indicated that cCRY4 from the immunocomplex formed in the dark dissociated from C1-mAb during blue light illumination as weak as 25 μW/cm2 and that the release occurred with not only blue but also near UV light. These results suggest that cCRY4 reversibly changes its structure within the carboxyl-terminal region in a light-dependent manner and operates as a photoreceptor or magnetoreceptor with short wavelength sensitivity in the retina.
UR - http://www.scopus.com/inward/record.url?scp=84871125571&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871125571&partnerID=8YFLogxK
U2 - 10.1074/jbc.M112.395731
DO - 10.1074/jbc.M112.395731
M3 - Article
C2 - 23095750
AN - SCOPUS:84871125571
SN - 0021-9258
VL - 287
SP - 42634
EP - 42641
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 51
ER -