Lindelöf spaces with small pseudocharacter and an analog of Borel's conjecture for subsets of [0; 1]@1

Franklin D. Tall, Toshimichi Usuba

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

e improve results of Shelah, Tall, and Scheepers concerning the cardinality of Lindelöf spaces with small pseudocharacter. We establish the consistency of an analog of Borel's Conjecture for subspaces of [0; 1]@1 .

Original languageEnglish
Pages (from-to)1299-1309
Number of pages11
JournalHouston Journal of Mathematics
Volume40
Issue number4
Publication statusPublished - 2014
Externally publishedYes

Fingerprint

Pseudocharacter
Cardinality
Subspace
Analogue
Subset

Keywords

  • Generalized Borel Conjecture
  • Lindelöf indestructibility
  • Lindelöf spaces with small pseudocharacter

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Lindelöf spaces with small pseudocharacter and an analog of Borel's conjecture for subsets of [0; 1]@1. / Tall, Franklin D.; Usuba, Toshimichi.

In: Houston Journal of Mathematics, Vol. 40, No. 4, 2014, p. 1299-1309.

Research output: Contribution to journalArticle

@article{c4e02049068d4c52a86ea5c756c0aafb,
title = "Lindel{\"o}f spaces with small pseudocharacter and an analog of Borel's conjecture for subsets of [0; 1]@1",
abstract = "e improve results of Shelah, Tall, and Scheepers concerning the cardinality of Lindel{\"o}f spaces with small pseudocharacter. We establish the consistency of an analog of Borel's Conjecture for subspaces of [0; 1]@1 .",
keywords = "Generalized Borel Conjecture, Lindel{\"o}f indestructibility, Lindel{\"o}f spaces with small pseudocharacter",
author = "Tall, {Franklin D.} and Toshimichi Usuba",
year = "2014",
language = "English",
volume = "40",
pages = "1299--1309",
journal = "Houston Journal of Mathematics",
issn = "0362-1588",
publisher = "University of Houston",
number = "4",

}

TY - JOUR

T1 - Lindelöf spaces with small pseudocharacter and an analog of Borel's conjecture for subsets of [0; 1]@1

AU - Tall, Franklin D.

AU - Usuba, Toshimichi

PY - 2014

Y1 - 2014

N2 - e improve results of Shelah, Tall, and Scheepers concerning the cardinality of Lindelöf spaces with small pseudocharacter. We establish the consistency of an analog of Borel's Conjecture for subspaces of [0; 1]@1 .

AB - e improve results of Shelah, Tall, and Scheepers concerning the cardinality of Lindelöf spaces with small pseudocharacter. We establish the consistency of an analog of Borel's Conjecture for subspaces of [0; 1]@1 .

KW - Generalized Borel Conjecture

KW - Lindelöf indestructibility

KW - Lindelöf spaces with small pseudocharacter

UR - http://www.scopus.com/inward/record.url?scp=84922378743&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84922378743&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84922378743

VL - 40

SP - 1299

EP - 1309

JO - Houston Journal of Mathematics

JF - Houston Journal of Mathematics

SN - 0362-1588

IS - 4

ER -