Low temperature and low pressure bonding of plateless Cu–Cu substrates by Ag-based transient liquid phase sintering

    Research output: Contribution to journalArticle

    Abstract

    Bonding silicon carbide/gallium nitride (SiC/GaN) based power modules, particularly epoxy-molded modules to heat-substrate and/or heat sink, requires low processing temperature preferably lower than 250 °C, and low pressure as low as 0.1 MPa to prevent damage to the modules. In addition, due to the impracticality of depositing metal-plating to the epoxy-molded module, bonding of plateless Cu-substrates is in great demand. Furthermore, post-processing residual flux cleaning, which is costly and unfavorable to industry need to be avoided as possible by opting out the usage of flux. Up to authors’ knowledge, our study is the first to fulfill all requirements stated above. Transient liquid phase sintering (TLPS) of mixed fluxless Sn–Bi (tin–bismuth) eutectic alloy and Ag (silver) particles was applied to bond plateless Cu–Cu substrates. Sintering temperature of 250 °C, sintering pressure of 0.02 MPa, and reducing environment were applied during processing. The effects of addition amount of Sn–Bi and sintering holding time to the shear strength and microstructure were investigated. The remelting temperature after sintering was also examined. Shear strength of 30 wt% added Sn–Bi was over than 20 MPa, which qualify the requirement of MIL-STD-883K, and larger than conventional Pb-based solder. Formation of intermetallic compounds are thought to strengthen the interface and matrix. Remelting temperature shifted from eutectic temperature of Sn–Bi to approximately 262 °C, allowing the application of modules at higher operating temperature than the processing temperature.

    Original languageEnglish
    Pages (from-to)1-12
    Number of pages12
    JournalJournal of Materials Science: Materials in Electronics
    DOIs
    Publication statusAccepted/In press - 2017 Mar 7

    Fingerprint

    liquid phase sintering
    Liquid phase sintering
    low pressure
    sintering
    Pressure
    modules
    Temperature
    Substrates
    Sintering
    shear strength
    Shear Strength
    Remelting
    temperature
    Processing
    melting
    Shear strength
    Eutectics
    eutectic alloys
    requirements
    gallium nitrides

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Atomic and Molecular Physics, and Optics
    • Condensed Matter Physics
    • Electrical and Electronic Engineering

    Cite this

    @article{604830049131412c8d31aa6b65be6623,
    title = "Low temperature and low pressure bonding of plateless Cu–Cu substrates by Ag-based transient liquid phase sintering",
    abstract = "Bonding silicon carbide/gallium nitride (SiC/GaN) based power modules, particularly epoxy-molded modules to heat-substrate and/or heat sink, requires low processing temperature preferably lower than 250 °C, and low pressure as low as 0.1 MPa to prevent damage to the modules. In addition, due to the impracticality of depositing metal-plating to the epoxy-molded module, bonding of plateless Cu-substrates is in great demand. Furthermore, post-processing residual flux cleaning, which is costly and unfavorable to industry need to be avoided as possible by opting out the usage of flux. Up to authors’ knowledge, our study is the first to fulfill all requirements stated above. Transient liquid phase sintering (TLPS) of mixed fluxless Sn–Bi (tin–bismuth) eutectic alloy and Ag (silver) particles was applied to bond plateless Cu–Cu substrates. Sintering temperature of 250 °C, sintering pressure of 0.02 MPa, and reducing environment were applied during processing. The effects of addition amount of Sn–Bi and sintering holding time to the shear strength and microstructure were investigated. The remelting temperature after sintering was also examined. Shear strength of 30 wt{\%} added Sn–Bi was over than 20 MPa, which qualify the requirement of MIL-STD-883K, and larger than conventional Pb-based solder. Formation of intermetallic compounds are thought to strengthen the interface and matrix. Remelting temperature shifted from eutectic temperature of Sn–Bi to approximately 262 °C, allowing the application of modules at higher operating temperature than the processing temperature.",
    author = "Muhammad, {Khairi Faiz} and Takehiro Yamamoto and Makoto Yoshida",
    year = "2017",
    month = "3",
    day = "7",
    doi = "10.1007/s10854-017-6674-3",
    language = "English",
    pages = "1--12",
    journal = "Journal of Materials Science: Materials in Medicine",
    issn = "0957-4530",
    publisher = "Springer Netherlands",

    }

    TY - JOUR

    T1 - Low temperature and low pressure bonding of plateless Cu–Cu substrates by Ag-based transient liquid phase sintering

    AU - Muhammad, Khairi Faiz

    AU - Yamamoto, Takehiro

    AU - Yoshida, Makoto

    PY - 2017/3/7

    Y1 - 2017/3/7

    N2 - Bonding silicon carbide/gallium nitride (SiC/GaN) based power modules, particularly epoxy-molded modules to heat-substrate and/or heat sink, requires low processing temperature preferably lower than 250 °C, and low pressure as low as 0.1 MPa to prevent damage to the modules. In addition, due to the impracticality of depositing metal-plating to the epoxy-molded module, bonding of plateless Cu-substrates is in great demand. Furthermore, post-processing residual flux cleaning, which is costly and unfavorable to industry need to be avoided as possible by opting out the usage of flux. Up to authors’ knowledge, our study is the first to fulfill all requirements stated above. Transient liquid phase sintering (TLPS) of mixed fluxless Sn–Bi (tin–bismuth) eutectic alloy and Ag (silver) particles was applied to bond plateless Cu–Cu substrates. Sintering temperature of 250 °C, sintering pressure of 0.02 MPa, and reducing environment were applied during processing. The effects of addition amount of Sn–Bi and sintering holding time to the shear strength and microstructure were investigated. The remelting temperature after sintering was also examined. Shear strength of 30 wt% added Sn–Bi was over than 20 MPa, which qualify the requirement of MIL-STD-883K, and larger than conventional Pb-based solder. Formation of intermetallic compounds are thought to strengthen the interface and matrix. Remelting temperature shifted from eutectic temperature of Sn–Bi to approximately 262 °C, allowing the application of modules at higher operating temperature than the processing temperature.

    AB - Bonding silicon carbide/gallium nitride (SiC/GaN) based power modules, particularly epoxy-molded modules to heat-substrate and/or heat sink, requires low processing temperature preferably lower than 250 °C, and low pressure as low as 0.1 MPa to prevent damage to the modules. In addition, due to the impracticality of depositing metal-plating to the epoxy-molded module, bonding of plateless Cu-substrates is in great demand. Furthermore, post-processing residual flux cleaning, which is costly and unfavorable to industry need to be avoided as possible by opting out the usage of flux. Up to authors’ knowledge, our study is the first to fulfill all requirements stated above. Transient liquid phase sintering (TLPS) of mixed fluxless Sn–Bi (tin–bismuth) eutectic alloy and Ag (silver) particles was applied to bond plateless Cu–Cu substrates. Sintering temperature of 250 °C, sintering pressure of 0.02 MPa, and reducing environment were applied during processing. The effects of addition amount of Sn–Bi and sintering holding time to the shear strength and microstructure were investigated. The remelting temperature after sintering was also examined. Shear strength of 30 wt% added Sn–Bi was over than 20 MPa, which qualify the requirement of MIL-STD-883K, and larger than conventional Pb-based solder. Formation of intermetallic compounds are thought to strengthen the interface and matrix. Remelting temperature shifted from eutectic temperature of Sn–Bi to approximately 262 °C, allowing the application of modules at higher operating temperature than the processing temperature.

    UR - http://www.scopus.com/inward/record.url?scp=85014560459&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85014560459&partnerID=8YFLogxK

    U2 - 10.1007/s10854-017-6674-3

    DO - 10.1007/s10854-017-6674-3

    M3 - Article

    AN - SCOPUS:85014560459

    SP - 1

    EP - 12

    JO - Journal of Materials Science: Materials in Medicine

    JF - Journal of Materials Science: Materials in Medicine

    SN - 0957-4530

    ER -