Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients

Robert Haller-Dintelmann, Horst Heck, Matthias Georg Hieber

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L , Let 1 <p, q <∞ and let ω be a Muckenhoupt weight. It is proved that systems of this kind possess a unique solution u satisfying ||u′||Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.

Original languageEnglish
Pages (from-to)717-736
Number of pages20
JournalJournal of the London Mathematical Society
Volume74
Issue number3
DOIs
Publication statusPublished - 2006 Dec
Externally publishedYes

Fingerprint

Lp Estimates
Parabolic Systems
Muckenhoupt Weights
Coefficient
Unique Solution
Regularity
Form

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients. / Haller-Dintelmann, Robert; Heck, Horst; Hieber, Matthias Georg.

In: Journal of the London Mathematical Society, Vol. 74, No. 3, 12.2006, p. 717-736.

Research output: Contribution to journalArticle

@article{58da9f96d103459b9d01c8843a58972c,
title = "Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients",
abstract = "Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L ∞, Let 1 Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.",
author = "Robert Haller-Dintelmann and Horst Heck and Hieber, {Matthias Georg}",
year = "2006",
month = "12",
doi = "10.1112/S0024610706023192",
language = "English",
volume = "74",
pages = "717--736",
journal = "Journal of the London Mathematical Society",
issn = "0024-6107",
publisher = "Oxford University Press",
number = "3",

}

TY - JOUR

T1 - Lp - Lq Estimates for parabolic systems in non-divergence form with VMO coefficients

AU - Haller-Dintelmann, Robert

AU - Heck, Horst

AU - Hieber, Matthias Georg

PY - 2006/12

Y1 - 2006/12

N2 - Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L ∞, Let 1 Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.

AB - Consider a parabolic N × N-system of order m on ℝn with top-order coefficients aα ∈ VMO∩L ∞, Let 1 Lq(J;Lωp(ℝn)N) + ||Au||Lq(J;Lωp,(ℝn)N) ≤ C||f|| Lq(J;Lωp(ℝn)N), where Au = Σ |α|≤maαDαu and J = [0, ∞ ). In particular, choosing ω = 1, the realization of A in L p(ℝn)N has maximal LpL q regularity.

UR - http://www.scopus.com/inward/record.url?scp=33846046441&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33846046441&partnerID=8YFLogxK

U2 - 10.1112/S0024610706023192

DO - 10.1112/S0024610706023192

M3 - Article

AN - SCOPUS:33846046441

VL - 74

SP - 717

EP - 736

JO - Journal of the London Mathematical Society

JF - Journal of the London Mathematical Society

SN - 0024-6107

IS - 3

ER -