## Abstract

It has been asserted that the damped wave equation has the diffusive structure as t → ∞. In this paper we consider the Cauchy problem in 3-dimensional space for the linear damped wave equation and the corresponding parabolic equation, and obtain the L^{p} - L^{q} estimates of the difference of each solution, which represent the assertion precisely. Explicit formulas of the solutions are analyzed for the proof. The second aim is to apply the L^{p} - L^{q} estimates to the semilinear damped wave equation with power nonlinearity. If the power is larger than the Fujita exponent, then the time global existence of small weak solution is proved and its optimal decay order is obtained.

Original language | English |
---|---|

Pages (from-to) | 631-649 |

Number of pages | 19 |

Journal | Mathematische Zeitschrift |

Volume | 244 |

Issue number | 3 |

Publication status | Published - 2003 Jul |

## ASJC Scopus subject areas

- Mathematics(all)

## Fingerprint

Dive into the research topics of 'L^{p}-L

^{q}estimates of solutions to the damped wave equation in 3-dimensional space and their application'. Together they form a unique fingerprint.