Maximal L p - L q -Estimates for the stokes equation: A short proof of solonnikov's theorem

Matthias Geissert, Matthias Hess, Matthias Georg Hieber, Céline Schwarz, Kyriakos Stavrakidis

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1 <p <\infty, of {\mathcal{R}} -angle 0, for bounded or exterior domains of Ω.

Original languageEnglish
Pages (from-to)47-60
Number of pages14
JournalJournal of Mathematical Fluid Mechanics
Volume12
Issue number1
DOIs
Publication statusPublished - 2010 Mar
Externally publishedYes

Fingerprint

Sectorial Operator
Stokes Operator
Exterior Domain
Stokes Equations
Bounded Domain
theorems
Angle
operators
estimates
Operator
Theorem
Estimate

Keywords

  • Exterior domains
  • Maximal L - L -estimates
  • Stokes equation

ASJC Scopus subject areas

  • Applied Mathematics
  • Mathematical Physics
  • Computational Mathematics
  • Condensed Matter Physics

Cite this

Maximal L p - L q -Estimates for the stokes equation : A short proof of solonnikov's theorem. / Geissert, Matthias; Hess, Matthias; Hieber, Matthias Georg; Schwarz, Céline; Stavrakidis, Kyriakos.

In: Journal of Mathematical Fluid Mechanics, Vol. 12, No. 1, 03.2010, p. 47-60.

Research output: Contribution to journalArticle

Geissert, Matthias ; Hess, Matthias ; Hieber, Matthias Georg ; Schwarz, Céline ; Stavrakidis, Kyriakos. / Maximal L p - L q -Estimates for the stokes equation : A short proof of solonnikov's theorem. In: Journal of Mathematical Fluid Mechanics. 2010 ; Vol. 12, No. 1. pp. 47-60.
@article{508f6e10004d4ff0afe15637f72662d4,
title = "Maximal L p - L q -Estimates for the stokes equation: A short proof of solonnikov's theorem",
abstract = "Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1",
keywords = "Exterior domains, Maximal L - L -estimates, Stokes equation",
author = "Matthias Geissert and Matthias Hess and Hieber, {Matthias Georg} and C{\'e}line Schwarz and Kyriakos Stavrakidis",
year = "2010",
month = "3",
doi = "10.1007/s00021-008-0275-0",
language = "English",
volume = "12",
pages = "47--60",
journal = "Journal of Mathematical Fluid Mechanics",
issn = "1422-6928",
publisher = "Birkhauser Verlag Basel",
number = "1",

}

TY - JOUR

T1 - Maximal L p - L q -Estimates for the stokes equation

T2 - A short proof of solonnikov's theorem

AU - Geissert, Matthias

AU - Hess, Matthias

AU - Hieber, Matthias Georg

AU - Schwarz, Céline

AU - Stavrakidis, Kyriakos

PY - 2010/3

Y1 - 2010/3

N2 - Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1

AB - Introducing a new localization method involving Bogovskis operator we give a short and new proof for maximal L p - L q -estimates for the solution of the Stokes equation. Moreover, it is shown that, up to constants, the Stokes operator is an {\mathcal{R}} -sectorial operator in L{p}{\sigma}(\Omega), 1

KW - Exterior domains

KW - Maximal L - L -estimates

KW - Stokes equation

UR - http://www.scopus.com/inward/record.url?scp=77950458637&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950458637&partnerID=8YFLogxK

U2 - 10.1007/s00021-008-0275-0

DO - 10.1007/s00021-008-0275-0

M3 - Article

AN - SCOPUS:77950458637

VL - 12

SP - 47

EP - 60

JO - Journal of Mathematical Fluid Mechanics

JF - Journal of Mathematical Fluid Mechanics

SN - 1422-6928

IS - 1

ER -