Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids

Toshiyuki Yokoi, Junji Wakabayashi, Yuki Otsuka, Wei Fan, Marie Iwama, Ryota Watanabe, Kenji Aramaki, Atsushi Shimojima, Takashi Tatsumi, Tatsuya Okubo

Research output: Contribution to journalArticle

118 Citations (Scopus)

Abstract

A liquid-phase method for preparing uniform-sized silica nanospheres (SNSs) 12 nm in size and their three-dimensionally ordered arrangement upon solvent evaporation have recently been pioneered by us. The SNSs are formed in the emulsion system containing Si(OEt)4 (TEOS), water, and basic amino acids under weakly basic conditions (pH 9-10). Here, we report the formation mechanism of the SNSs; the reasons for the uniform size and the ordered arrangement are described in detail. The formation process is monitored by FE-SEM, SAXS, and liquid-state NMR. The FESEM observations reveal that silica nanoparticles ca. 4 nm in size are formed in the water phase at the early stage (~0.5 h) of the reaction. The SAXS measurements suggest that the number density of the particles remains unchanged when they are gradually grown. Liquid-state 1H NMR analyses suggest that TEOS are slowly hydrolyzed at the oil-water interface to continuously supply silicate species into the water phase. The silicate species are immediately consumed for the growth of the parent particles without forming new particles. The size of the SNSs can be tuned from 8 to 35 nm by varying the synthesis conditions and/or the amount of TEOS. The zeta potential and pH of the dispersion of SNSs throughout the solvent evaporation process are almost constant approximately at -40 mV and 9-10, respectively; the SNSs have been well-dispersed until the final stage of the evaporation process. The critical roles of basic amino acids in the formation and regular arrangement of SNSs are discussed based on the experimental results.

Original languageEnglish
Pages (from-to)3719-3729
Number of pages11
JournalChemistry of Materials
Volume21
Issue number15
DOIs
Publication statusPublished - 2009 Aug 11
Externally publishedYes

Fingerprint

Basic Amino Acids
Nanospheres
Silicon Dioxide
Amino acids
Silica
Silicates
Evaporation
Water
Liquids
Nuclear magnetic resonance
Zeta potential
Emulsions
Oils
Nanoparticles
Scanning electron microscopy

ASJC Scopus subject areas

  • Materials Chemistry
  • Chemical Engineering(all)
  • Chemistry(all)

Cite this

Yokoi, T., Wakabayashi, J., Otsuka, Y., Fan, W., Iwama, M., Watanabe, R., ... Okubo, T. (2009). Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chemistry of Materials, 21(15), 3719-3729. https://doi.org/10.1021/cm900993b

Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. / Yokoi, Toshiyuki; Wakabayashi, Junji; Otsuka, Yuki; Fan, Wei; Iwama, Marie; Watanabe, Ryota; Aramaki, Kenji; Shimojima, Atsushi; Tatsumi, Takashi; Okubo, Tatsuya.

In: Chemistry of Materials, Vol. 21, No. 15, 11.08.2009, p. 3719-3729.

Research output: Contribution to journalArticle

Yokoi, T, Wakabayashi, J, Otsuka, Y, Fan, W, Iwama, M, Watanabe, R, Aramaki, K, Shimojima, A, Tatsumi, T & Okubo, T 2009, 'Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids', Chemistry of Materials, vol. 21, no. 15, pp. 3719-3729. https://doi.org/10.1021/cm900993b
Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R et al. Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chemistry of Materials. 2009 Aug 11;21(15):3719-3729. https://doi.org/10.1021/cm900993b
Yokoi, Toshiyuki ; Wakabayashi, Junji ; Otsuka, Yuki ; Fan, Wei ; Iwama, Marie ; Watanabe, Ryota ; Aramaki, Kenji ; Shimojima, Atsushi ; Tatsumi, Takashi ; Okubo, Tatsuya. / Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. In: Chemistry of Materials. 2009 ; Vol. 21, No. 15. pp. 3719-3729.
@article{286cf6abadb44dc9866c88ad0720cfce,
title = "Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids",
abstract = "A liquid-phase method for preparing uniform-sized silica nanospheres (SNSs) 12 nm in size and their three-dimensionally ordered arrangement upon solvent evaporation have recently been pioneered by us. The SNSs are formed in the emulsion system containing Si(OEt)4 (TEOS), water, and basic amino acids under weakly basic conditions (pH 9-10). Here, we report the formation mechanism of the SNSs; the reasons for the uniform size and the ordered arrangement are described in detail. The formation process is monitored by FE-SEM, SAXS, and liquid-state NMR. The FESEM observations reveal that silica nanoparticles ca. 4 nm in size are formed in the water phase at the early stage (~0.5 h) of the reaction. The SAXS measurements suggest that the number density of the particles remains unchanged when they are gradually grown. Liquid-state 1H NMR analyses suggest that TEOS are slowly hydrolyzed at the oil-water interface to continuously supply silicate species into the water phase. The silicate species are immediately consumed for the growth of the parent particles without forming new particles. The size of the SNSs can be tuned from 8 to 35 nm by varying the synthesis conditions and/or the amount of TEOS. The zeta potential and pH of the dispersion of SNSs throughout the solvent evaporation process are almost constant approximately at -40 mV and 9-10, respectively; the SNSs have been well-dispersed until the final stage of the evaporation process. The critical roles of basic amino acids in the formation and regular arrangement of SNSs are discussed based on the experimental results.",
author = "Toshiyuki Yokoi and Junji Wakabayashi and Yuki Otsuka and Wei Fan and Marie Iwama and Ryota Watanabe and Kenji Aramaki and Atsushi Shimojima and Takashi Tatsumi and Tatsuya Okubo",
year = "2009",
month = "8",
day = "11",
doi = "10.1021/cm900993b",
language = "English",
volume = "21",
pages = "3719--3729",
journal = "Chemistry of Materials",
issn = "0897-4756",
publisher = "American Chemical Society",
number = "15",

}

TY - JOUR

T1 - Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids

AU - Yokoi, Toshiyuki

AU - Wakabayashi, Junji

AU - Otsuka, Yuki

AU - Fan, Wei

AU - Iwama, Marie

AU - Watanabe, Ryota

AU - Aramaki, Kenji

AU - Shimojima, Atsushi

AU - Tatsumi, Takashi

AU - Okubo, Tatsuya

PY - 2009/8/11

Y1 - 2009/8/11

N2 - A liquid-phase method for preparing uniform-sized silica nanospheres (SNSs) 12 nm in size and their three-dimensionally ordered arrangement upon solvent evaporation have recently been pioneered by us. The SNSs are formed in the emulsion system containing Si(OEt)4 (TEOS), water, and basic amino acids under weakly basic conditions (pH 9-10). Here, we report the formation mechanism of the SNSs; the reasons for the uniform size and the ordered arrangement are described in detail. The formation process is monitored by FE-SEM, SAXS, and liquid-state NMR. The FESEM observations reveal that silica nanoparticles ca. 4 nm in size are formed in the water phase at the early stage (~0.5 h) of the reaction. The SAXS measurements suggest that the number density of the particles remains unchanged when they are gradually grown. Liquid-state 1H NMR analyses suggest that TEOS are slowly hydrolyzed at the oil-water interface to continuously supply silicate species into the water phase. The silicate species are immediately consumed for the growth of the parent particles without forming new particles. The size of the SNSs can be tuned from 8 to 35 nm by varying the synthesis conditions and/or the amount of TEOS. The zeta potential and pH of the dispersion of SNSs throughout the solvent evaporation process are almost constant approximately at -40 mV and 9-10, respectively; the SNSs have been well-dispersed until the final stage of the evaporation process. The critical roles of basic amino acids in the formation and regular arrangement of SNSs are discussed based on the experimental results.

AB - A liquid-phase method for preparing uniform-sized silica nanospheres (SNSs) 12 nm in size and their three-dimensionally ordered arrangement upon solvent evaporation have recently been pioneered by us. The SNSs are formed in the emulsion system containing Si(OEt)4 (TEOS), water, and basic amino acids under weakly basic conditions (pH 9-10). Here, we report the formation mechanism of the SNSs; the reasons for the uniform size and the ordered arrangement are described in detail. The formation process is monitored by FE-SEM, SAXS, and liquid-state NMR. The FESEM observations reveal that silica nanoparticles ca. 4 nm in size are formed in the water phase at the early stage (~0.5 h) of the reaction. The SAXS measurements suggest that the number density of the particles remains unchanged when they are gradually grown. Liquid-state 1H NMR analyses suggest that TEOS are slowly hydrolyzed at the oil-water interface to continuously supply silicate species into the water phase. The silicate species are immediately consumed for the growth of the parent particles without forming new particles. The size of the SNSs can be tuned from 8 to 35 nm by varying the synthesis conditions and/or the amount of TEOS. The zeta potential and pH of the dispersion of SNSs throughout the solvent evaporation process are almost constant approximately at -40 mV and 9-10, respectively; the SNSs have been well-dispersed until the final stage of the evaporation process. The critical roles of basic amino acids in the formation and regular arrangement of SNSs are discussed based on the experimental results.

UR - http://www.scopus.com/inward/record.url?scp=68149091666&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68149091666&partnerID=8YFLogxK

U2 - 10.1021/cm900993b

DO - 10.1021/cm900993b

M3 - Article

AN - SCOPUS:68149091666

VL - 21

SP - 3719

EP - 3729

JO - Chemistry of Materials

JF - Chemistry of Materials

SN - 0897-4756

IS - 15

ER -