Abstract
We present strategies to update the mesh as the spatial domain changes its shape in computations of flow problems with moving boundaries and interfaces. These strategies are used in conjunction with the stabilized space-time finite element formulations introduced earlier for computation of flow problems with free surfaces, two-liquid interfaces, moving mechanical components, and fluid-structure and fluid-particle interactions. In these mesh update strategies, based on the special and automatic mesh moving schemes, the frequency of remeshing is minimized to reduce the projection errors and to minimize the cost associated with mesh generation and parallelization set-up. These costs could otherwise become overwhelming in 3D problems. We present several examples of these mesh update strategies being used in massively parallel computation of incompressible flow problems.
Original language | English |
---|---|
Pages (from-to) | 73-94 |
Number of pages | 22 |
Journal | Computer Methods in Applied Mechanics and Engineering |
Volume | 119 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 1994 Nov |
Externally published | Yes |
ASJC Scopus subject areas
- Computational Mechanics
- Mechanics of Materials
- Mechanical Engineering
- Physics and Astronomy(all)
- Computer Science Applications