TY - JOUR
T1 - MMS6 protein regulates crystal morphology during nano-sized magnetite biomineralization in vivo
AU - Tanaka, Masayoshi
AU - Mazuyama, Eri
AU - Arakaki, Atsushi
AU - Matsunaga, Tadashi
PY - 2011/2/25
Y1 - 2011/2/25
N2 - Biomineralization, the process by which minerals are deposited by organisms, has attracted considerable attention because this mechanism has shown great potential to inspire bottom-up material syntheses. To understand the mechanism for morphological regulation that occurs during biomineralization, many regulatory proteins have been isolated from various biominerals. However, the molecular mechanisms that regulate the morphology of biominerals remain unclear because there is a lack of in vivo evidence. Magnetotactic bacteria synthesize intracellular magnetosomes that comprise membraneenveloped single crystalline magnetite (Fe3O4). These nanosized magnetite crystals (<100 nm) are bacterial species dependent in shape and size. Mms6 is a protein that is tightly associated with magnetite crystals. Based on in vitro experiments, this protein was first implicated in morphological regulation during nano-sized magnetite biomineralization. In this study, we analyzed the mms6 gene deletion mutant (Δmms6) of Magnetospirillum magneticum (M. magneticum) AMB-1. Surprisingly, the Δmms6 strain was found to synthesize the smaller magnetite crystals with uncommon crystal faces, while the wild-type and complementation strains synthesized highly ordered cubo-octahedral crystals. Furthermore, deletion of mms6 gene led to drastic changes in the profiles of the proteins tightly bound to magnetite crystals. It was found that Mms6 plays a role in the in vivo regulation of the crystal structure to impart the cubo-octahedral morphology to the crystals during biomineralization in magnetotactic bacteria. Magnetotactic bacteria synthesize magnetite crystals under ambient conditions via a highly controlled morphological regulation system that uses biological molecules.
AB - Biomineralization, the process by which minerals are deposited by organisms, has attracted considerable attention because this mechanism has shown great potential to inspire bottom-up material syntheses. To understand the mechanism for morphological regulation that occurs during biomineralization, many regulatory proteins have been isolated from various biominerals. However, the molecular mechanisms that regulate the morphology of biominerals remain unclear because there is a lack of in vivo evidence. Magnetotactic bacteria synthesize intracellular magnetosomes that comprise membraneenveloped single crystalline magnetite (Fe3O4). These nanosized magnetite crystals (<100 nm) are bacterial species dependent in shape and size. Mms6 is a protein that is tightly associated with magnetite crystals. Based on in vitro experiments, this protein was first implicated in morphological regulation during nano-sized magnetite biomineralization. In this study, we analyzed the mms6 gene deletion mutant (Δmms6) of Magnetospirillum magneticum (M. magneticum) AMB-1. Surprisingly, the Δmms6 strain was found to synthesize the smaller magnetite crystals with uncommon crystal faces, while the wild-type and complementation strains synthesized highly ordered cubo-octahedral crystals. Furthermore, deletion of mms6 gene led to drastic changes in the profiles of the proteins tightly bound to magnetite crystals. It was found that Mms6 plays a role in the in vivo regulation of the crystal structure to impart the cubo-octahedral morphology to the crystals during biomineralization in magnetotactic bacteria. Magnetotactic bacteria synthesize magnetite crystals under ambient conditions via a highly controlled morphological regulation system that uses biological molecules.
UR - http://www.scopus.com/inward/record.url?scp=79953175285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79953175285&partnerID=8YFLogxK
U2 - 10.1074/jbc.M110.183434
DO - 10.1074/jbc.M110.183434
M3 - Article
C2 - 21169637
AN - SCOPUS:79953175285
SN - 0021-9258
VL - 286
SP - 6386
EP - 6392
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -