Abstract
Radio frequency ablation (RFA) has increasingly been used over the past few years and RFA treatment is minimally invasive for patients. However, it is difficult for operators to control the precise formation of coagulation zones due to inadequate imaging modalities. With this in mind, an ablation system using numerical simulation to analyze the temperature distribution of the organ is needed to overcome this deficiency. The objective of our work is to develop a temperature dependent thermophysical liver model. First, an overview is given of the development of the thermophysical liver model. Second, a simulation to evaluate the effect of temperature dependence of the thermophysical properties of the liver is explained. Finally, the result of the simulation, which indicated that the temperature dependence of thermophysical properties accounts for temperature differences influencing the accuracy of RFA treatment is described.
Original language | English |
---|---|
Title of host publication | Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 |
Pages | 5100-5105 |
Number of pages | 6 |
DOIs | |
Publication status | Published - 2009 |
Event | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN Duration: 2009 Sep 2 → 2009 Sep 6 |
Other
Other | 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 |
---|---|
City | Minneapolis, MN |
Period | 09/9/2 → 09/9/6 |
ASJC Scopus subject areas
- Cell Biology
- Developmental Biology
- Biomedical Engineering
- Medicine(all)