Modelling radiation damage to pixel sensors in the ATLAS detector

The ATLAS Collaboration

Research output: Contribution to journalArticle

Abstract

Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 1015 1 MeV neq/cm2, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (≤ 10 1 MeV neq/cm2).

Original languageEnglish
Article numberP06012
JournalJournal of Instrumentation
Volume14
Issue number6
DOIs
Publication statusPublished - 2019 Jun 11

Fingerprint

Radiation Damage
Radiation damage
radiation damage
Pixel
Pixels
pixels
Detector
Detectors
Sensor
sensors
detectors
Sensors
Modeling
Radiation
Point Interactions
Digitization
Analog to digital conversion
radiation
Proximity
Excess

Keywords

  • Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc)
  • Radiation-hard detectors
  • Solid state detectors

ASJC Scopus subject areas

  • Mathematical Physics
  • Instrumentation

Cite this

Modelling radiation damage to pixel sensors in the ATLAS detector. / The ATLAS Collaboration.

In: Journal of Instrumentation, Vol. 14, No. 6, P06012, 11.06.2019.

Research output: Contribution to journalArticle

@article{9b35e80676fc426cb563157684152c5d,
title = "Modelling radiation damage to pixel sensors in the ATLAS detector",
abstract = "Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 1015 1 MeV neq/cm2, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (≤ 10 1 MeV neq/cm2).",
keywords = "Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc), Radiation-hard detectors, Solid state detectors",
author = "{The ATLAS Collaboration} and M. Aaboud and G. Aad and B. Abbott and Abbott, {D. C.} and O. Abdinov and Abhayasinghe, {D. K.} and Abidi, {S. H.} and Abouzeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and J. Adelman and M. Adersberger and A. Adiguzel and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and F. Ahmadov and G. Aielli and S. Akatsuka and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and {Al Khoury}, K. and Alberghi, {G. L.} and J. Albert and {Alconada Verzini}, {M. J.} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and D. Alexandre and T. Alexopoulos and M. Alhroob and B. Ali and T. Mitani and M. Morinaga and K. Yorita",
year = "2019",
month = "6",
day = "11",
doi = "10.1088/1748-0221/14/06/P06012",
language = "English",
volume = "14",
journal = "Journal of Instrumentation",
issn = "1748-0221",
publisher = "IOP Publishing Ltd.",
number = "6",

}

TY - JOUR

T1 - Modelling radiation damage to pixel sensors in the ATLAS detector

AU - The ATLAS Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abbott, D. C.

AU - Abdinov, O.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - Abouzeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adam, L.

AU - Adam Bourdarios, C.

AU - Adamczyk, L.

AU - Adamek, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agapopoulou, C.

AU - Agaras, M. N.

AU - Aggarwal, A.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Al Khoury, K.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexandre, D.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Mitani, T.

AU - Morinaga, M.

AU - Yorita, K.

PY - 2019/6/11

Y1 - 2019/6/11

N2 - Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 1015 1 MeV neq/cm2, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (≤ 10 1 MeV neq/cm2).

AB - Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 1015 1 MeV neq/cm2, while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (≤ 10 1 MeV neq/cm2).

KW - Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc)

KW - Radiation-hard detectors

KW - Solid state detectors

UR - http://www.scopus.com/inward/record.url?scp=85070359632&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070359632&partnerID=8YFLogxK

U2 - 10.1088/1748-0221/14/06/P06012

DO - 10.1088/1748-0221/14/06/P06012

M3 - Article

AN - SCOPUS:85070359632

VL - 14

JO - Journal of Instrumentation

JF - Journal of Instrumentation

SN - 1748-0221

IS - 6

M1 - P06012

ER -