Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates

Yusuke Ide, Yusuke Koike, Makoto Ogawa

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

The coating of TiO2 particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO2/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyltrimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2nm and controlled pore diameter (1.2, 1.6, and 2.7nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The 29Si MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures.

Original languageEnglish
Pages (from-to)245-251
Number of pages7
JournalJournal of Colloid and Interface Science
Volume358
Issue number1
DOIs
Publication statusPublished - 2011 Jun 1

Keywords

  • Mesoporous silica
  • Molecular recognition
  • Nonylphenol
  • Photocatalysis
  • Titania

ASJC Scopus subject areas

  • Surfaces, Coatings and Films
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Molecular selective photocatalysis by TiO<sub>2</sub>/nanoporous silica core/shell particulates'. Together they form a unique fingerprint.

  • Cite this