New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods

    Research output: Contribution to journalArticle

    46 Citations (Scopus)

    Abstract

    In this paper, we provide a brief overview of the development of stabilized and multiscale methods in fluid dynamics. We mainly focus on recent developments and new directions in the variational multiscale (VMS) methods. We also discuss applications of the VMS techniques to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows with moving domains including subdomains in relative motion, and free-surface flows.

    Original languageEnglish
    Pages (from-to)2217-2226
    Number of pages10
    JournalMathematical Models and Methods in Applied Sciences
    Volume25
    Issue number12
    DOIs
    Publication statusPublished - 2015 Nov 26

    Fingerprint

    Stabilized Methods
    Multiscale Methods
    Dynamic Modeling
    Fluid Dynamics
    Fluid dynamics
    Variational multiscale Method
    Variational techniques
    Wall flow
    Free Surface Flow
    Dynamic Problem
    Turbulent Flow
    Turbulent flow
    Reynolds number
    Motion

    Keywords

    • ALE method
    • ALE-VMS formulation
    • DSD/SST formulation
    • fluid-structure interaction
    • FSI
    • space-time method
    • ST-VMS formulation
    • Stabilized formulation
    • variational multiscale formulation
    • VMS

    ASJC Scopus subject areas

    • Applied Mathematics
    • Modelling and Simulation

    Cite this

    @article{37876e0cb5de45169450352292a2af65,
    title = "New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods",
    abstract = "In this paper, we provide a brief overview of the development of stabilized and multiscale methods in fluid dynamics. We mainly focus on recent developments and new directions in the variational multiscale (VMS) methods. We also discuss applications of the VMS techniques to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows with moving domains including subdomains in relative motion, and free-surface flows.",
    keywords = "ALE method, ALE-VMS formulation, DSD/SST formulation, fluid-structure interaction, FSI, space-time method, ST-VMS formulation, Stabilized formulation, variational multiscale formulation, VMS",
    author = "Yuri Bazilevs and Kenji Takizawa and Tezduyar, {Tayfun E.}",
    year = "2015",
    month = "11",
    day = "26",
    doi = "10.1142/S0218202515020029",
    language = "English",
    volume = "25",
    pages = "2217--2226",
    journal = "Mathematical Models and Methods in Applied Sciences",
    issn = "0218-2025",
    publisher = "World Scientific Publishing Co. Pte Ltd",
    number = "12",

    }

    TY - JOUR

    T1 - New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods

    AU - Bazilevs, Yuri

    AU - Takizawa, Kenji

    AU - Tezduyar, Tayfun E.

    PY - 2015/11/26

    Y1 - 2015/11/26

    N2 - In this paper, we provide a brief overview of the development of stabilized and multiscale methods in fluid dynamics. We mainly focus on recent developments and new directions in the variational multiscale (VMS) methods. We also discuss applications of the VMS techniques to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows with moving domains including subdomains in relative motion, and free-surface flows.

    AB - In this paper, we provide a brief overview of the development of stabilized and multiscale methods in fluid dynamics. We mainly focus on recent developments and new directions in the variational multiscale (VMS) methods. We also discuss applications of the VMS techniques to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows with moving domains including subdomains in relative motion, and free-surface flows.

    KW - ALE method

    KW - ALE-VMS formulation

    KW - DSD/SST formulation

    KW - fluid-structure interaction

    KW - FSI

    KW - space-time method

    KW - ST-VMS formulation

    KW - Stabilized formulation

    KW - variational multiscale formulation

    KW - VMS

    UR - http://www.scopus.com/inward/record.url?scp=84940449737&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84940449737&partnerID=8YFLogxK

    U2 - 10.1142/S0218202515020029

    DO - 10.1142/S0218202515020029

    M3 - Article

    VL - 25

    SP - 2217

    EP - 2226

    JO - Mathematical Models and Methods in Applied Sciences

    JF - Mathematical Models and Methods in Applied Sciences

    SN - 0218-2025

    IS - 12

    ER -