Abstract
Novel ion-exchange membranes containing sulfonic acid (So3H) and trimethyl ammonium [N(CH3)3] groups were prepared by a simple method of radiation-induced cografting of sodium styrenesulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 μ.|m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, respectively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 MNaCl solution were 0.25 and 0.85 Ω cm2, respectively From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 MNaCl solution was reduced to 85% comparing with that of the commercial ion-exchange membranes.
Original language | English |
---|---|
Pages (from-to) | 3659-3663 |
Number of pages | 5 |
Journal | Journal of the Electrochemical Society |
Volume | 142 |
Issue number | 11 |
DOIs | |
Publication status | Published - 1995 Nov |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Renewable Energy, Sustainability and the Environment
- Surfaces, Coatings and Films
- Electrochemistry
- Materials Chemistry