Novel pathways for elimination of chlorine atoms from growing Si(100) surfaces in CVD reactors

Nilson Kunioshi, Sho Hagino, Akio Fuwa, Katsunori Yamaguchi

    Research output: Contribution to journalArticle

    1 Citation (Scopus)

    Abstract

    Reactions leading to elimination of chlorine atoms from growing Si(100) surfaces were simulated using clusters of silicon atoms of different sizes and shapes, and at the UB3LYP/6–31 g(d,p) level of theory. The reactions of type SiCl2(s) + 2 H2(g), where (s) indicates an adsorbed species at the surface and (g) a gas-phase species, were found to proceed in two steps: SiCl2(s) + H2(g) → SiHCl(s) + HCl(g) and SiHCl(s) + H2(g) → SiH2(s) + HCl(g), each having activation energies around 55 kcal/mol, a value which is comparable to experimental values published in the literature. In addition, the results suggested that H-passivation of Si(100) surfaces support reactions leading to canonical epitaxial growth, providing a plausible explanation for the convenience of passivating the surfaces prior to silicon deposition. The reactions analyzed here can therefore be seen as important steps in the mechanism of epitaxial growth of Si(100) surfaces.

    Original languageEnglish
    Pages (from-to)773-779
    Number of pages7
    JournalApplied Surface Science
    Volume441
    DOIs
    Publication statusPublished - 2018 May 31

      Fingerprint

    Keywords

    • Reaction dynamics
    • Silicon epitaxial growth
    • Surface chemistry

    ASJC Scopus subject areas

    • Surfaces, Coatings and Films

    Cite this