Abstract
A brand new method for synthesizing Mn(PO3(OH))·3H 2O is attained in this paper. During this process, pure flake-like Mn(PO3(OH))·3H2O precipitate is prepared using C2H5OH as initiator. Besides that, LiMn 0.5Fe0.5PO4/C is successfully synthesized from the Mn(PO3(OH))·3H2O precursor at 650°C for the first time. Thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) are applied in the characterization of the Mn(PO3(OH))·3H2O precursor and LiMn 0.5Fe0.5PO4/C. High-resolution transmission electron microscopy (HRTEM) is also used to investigate the morphology of LiMn0.5Fe0.5PO4/C. X-ray photoelectron spectroscopy (XPS) and galvanostatic charge and discharge test are employed to characterize the Mn(PO3(OH))·3H2O precursor and LiMn0.5Fe0.5PO4 material, respectively. The as-prepared LiMn0.5Fe0.5PO4/C material exhibited a reversible capacity of 131 mAh g-1 at 0.05 C. It can be confirmed that the incorporation of Fe into LiMnPO4 can significantly improve the electrochemical properties for improving the conductivity of the material and facilitating the Li+ diffusion. In addition, a capacity of 120 mAh g-1 is still delivered at 0.05 C rate with a capacity retention of about 91% after 25 cycles, and reversible capacity can reach 105 mAh g-1 at 1 C.
Original language | English |
---|---|
Pages (from-to) | 214-219 |
Number of pages | 6 |
Journal | Journal of Power Sources |
Volume | 228 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Cathode material
- Lithium ion battery
- Olivine-structure
- Precipitation
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Energy Engineering and Power Technology
- Renewable Energy, Sustainability and the Environment
- Physical and Theoretical Chemistry