TY - GEN
T1 - Numerical study of collision behavior of melt drops during fuelcoolant interaction
AU - Wen, Panpan
AU - Li, Gen
AU - Gao, Jinchen
AU - Li, Yupeng
AU - Yamaji, Akifumi
AU - Yan, Junjie
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant Number 11975180).
Publisher Copyright:
© 2020 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2020
Y1 - 2020
N2 - The collision dynamics between two droplets plays an important role in various disciplines of nature and practical interests, such as fuel-coolant interaction (FCI), fuel combustion in engines, and various spraying process. FCI presents in nuclear reactor severe accident when the melt relocates into the coolant in the lower head with violent disturbance and vigorous heat transfer. The purpose of this study is to investigate the collision behavior of melt droplets during fuel-coolant interaction. The collision of two equal-sized droplets has been simulated in 3D by using the volume of fluid (VOF) and adaptive mesh refinement method. The numerical simulations of tetradecane droplet collision were carried out to validate the numerical methods. The results showed good agreement with the experiments. Furthermore, the simulations of uranium dioxide (UO2) droplets collision in coolant were carried out. The results showed that the contact area between droplets and coolant increased with time first and then decreased. With the increase of Weber number, the contact area of maximum in the droplet collision increased. Break happened in the later period and many child droplets formed. The number of child droplets increased with the increase of Weber number. In addition, the size distribution of little droplets was investigated.
AB - The collision dynamics between two droplets plays an important role in various disciplines of nature and practical interests, such as fuel-coolant interaction (FCI), fuel combustion in engines, and various spraying process. FCI presents in nuclear reactor severe accident when the melt relocates into the coolant in the lower head with violent disturbance and vigorous heat transfer. The purpose of this study is to investigate the collision behavior of melt droplets during fuel-coolant interaction. The collision of two equal-sized droplets has been simulated in 3D by using the volume of fluid (VOF) and adaptive mesh refinement method. The numerical simulations of tetradecane droplet collision were carried out to validate the numerical methods. The results showed good agreement with the experiments. Furthermore, the simulations of uranium dioxide (UO2) droplets collision in coolant were carried out. The results showed that the contact area between droplets and coolant increased with time first and then decreased. With the increase of Weber number, the contact area of maximum in the droplet collision increased. Break happened in the later period and many child droplets formed. The number of child droplets increased with the increase of Weber number. In addition, the size distribution of little droplets was investigated.
KW - Droplet collision
KW - FCI
KW - Numerical simulation
UR - http://www.scopus.com/inward/record.url?scp=85096032675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096032675&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85096032675
SN - 9784888982566
T3 - International Conference on Nuclear Engineering, Proceedings, ICONE
BT - Student Paper Competition; Thermal-Hydraulics; Verification and Validation
PB - American Society of Mechanical Engineers (ASME)
T2 - 2020 International Conference on Nuclear Engineering, ICONE 2020, collocated with the ASME 2020 Power Conference
Y2 - 4 April 2020 through 5 April 2020
ER -