On classes of maps which preserve finitisticness

Akira Koyama, Manuel A. Moron

Research output: Contribution to journalArticle

Abstract

We shall prove the following: (1) Let r: X → Y be a refinable map between paracompact spaces. Then X is finitistic if and only if Y is finitistic. (2) Let f: X → Y be a hereditary shape equivalence between metric spaces. Then if X is finitistic, Y is finitistic.

Original languageEnglish
Pages (from-to)3091-3096
Number of pages6
JournalProceedings of the American Mathematical Society
Volume130
Issue number10
DOIs
Publication statusPublished - 2002 Oct
Externally publishedYes

Fingerprint

Paracompact Space
Metric space
Equivalence
If and only if
Class

Keywords

  • C-refinable maps
  • Cohomological dimension
  • Extension dimension
  • Finitistic spaces
  • Hereditary shape equivalences
  • Refinable maps

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

On classes of maps which preserve finitisticness. / Koyama, Akira; Moron, Manuel A.

In: Proceedings of the American Mathematical Society, Vol. 130, No. 10, 10.2002, p. 3091-3096.

Research output: Contribution to journalArticle

@article{47c82a9a1ace4f568ee8af02c03cd4d0,
title = "On classes of maps which preserve finitisticness",
abstract = "We shall prove the following: (1) Let r: X → Y be a refinable map between paracompact spaces. Then X is finitistic if and only if Y is finitistic. (2) Let f: X → Y be a hereditary shape equivalence between metric spaces. Then if X is finitistic, Y is finitistic.",
keywords = "C-refinable maps, Cohomological dimension, Extension dimension, Finitistic spaces, Hereditary shape equivalences, Refinable maps",
author = "Akira Koyama and Moron, {Manuel A.}",
year = "2002",
month = "10",
doi = "10.1090/S0002-9939-02-06402-X",
language = "English",
volume = "130",
pages = "3091--3096",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "10",

}

TY - JOUR

T1 - On classes of maps which preserve finitisticness

AU - Koyama, Akira

AU - Moron, Manuel A.

PY - 2002/10

Y1 - 2002/10

N2 - We shall prove the following: (1) Let r: X → Y be a refinable map between paracompact spaces. Then X is finitistic if and only if Y is finitistic. (2) Let f: X → Y be a hereditary shape equivalence between metric spaces. Then if X is finitistic, Y is finitistic.

AB - We shall prove the following: (1) Let r: X → Y be a refinable map between paracompact spaces. Then X is finitistic if and only if Y is finitistic. (2) Let f: X → Y be a hereditary shape equivalence between metric spaces. Then if X is finitistic, Y is finitistic.

KW - C-refinable maps

KW - Cohomological dimension

KW - Extension dimension

KW - Finitistic spaces

KW - Hereditary shape equivalences

KW - Refinable maps

UR - http://www.scopus.com/inward/record.url?scp=0036788791&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036788791&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-02-06402-X

DO - 10.1090/S0002-9939-02-06402-X

M3 - Article

AN - SCOPUS:0036788791

VL - 130

SP - 3091

EP - 3096

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 10

ER -