On euclidean designs and potential energy

Tsuyoshi Miezaki, Makoto Tagami

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We study Euclidean designs from the viewpoint of the potential energy. For a finite set in Euclidean space, we formulate a linear programming bound for the potential energy by applying harmonic analysis on a sphere. We also introduce the concept of strong Euclidean designs from the viewpoint of the linear programming bound, and we give a Fisher type inequality for strong Euclidean designs. A finite set on Euclidean space is called a Euclidean a-code if any distinct two points in the set are separated at least by a. As a corollary of the linear programming bound, we give a method to determine an upper bound on the cardinalities of Euclidean a-codes on concentric spheres of given radii. Similarly we also give a method to determine a lower bound on the cardinalities of Euclidean t-designs as an analogue of the linear programming bound.

Original languageEnglish
JournalElectronic Journal of Combinatorics
Volume19
DOIs
Publication statusPublished - 2012
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'On euclidean designs and potential energy'. Together they form a unique fingerprint.

Cite this