On Polynomial-Time Learnability in the Limit of Strictly Deterministic Automata

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

This paper deals with the polynomial-time learnability of a language class in the limit from positive data, and discusses the learning problem of a subclass of deterministic finite automata (DFAs), called strictly deterministic automata (SDAs), in the framework of learning in the limit from positive data. We first discuss the difficulty of Pitt's definition in the framework of learning in the limit from positive data, by showing that any class of languages with an infinite descending chain property is not polynomial-time learnable in the limit from positive data. We then propose new definitions for polynomial-time learnability in the limit from positive data. We show in our new definitions that the class of SDAs is iteratively, consistently polynomial-time learnable in the limit from positive data. In particular, we present a learning algorithm that learns any SDA M in the limit from positive data, satisfying the properties that (i) the time for updating a conjecture is at most O(lm), (ii) the number of implicit prediction errors is at most O(ln), where l is the maximum length of all positive data provided, m is the alphabet size of M and n is the size of M, (iii) each conjecture is computed from only the previous conjecture and the current example, and (iv) at any stage the conjecture is consistent with the sample set seen so far. This is in marked contrast to the fact that the class of DFAs is neither learnable in the limit from positive data nor polynomial-time learnable in the limit.

Original languageEnglish
Pages (from-to)153-179
Number of pages27
JournalMachine Learning
Volume19
Issue number2
DOIs
Publication statusPublished - 1995 May
Externally publishedYes

Keywords

  • iterative learning
  • polynomial-time learnability in the limit
  • strictly deterministic automata

ASJC Scopus subject areas

  • Software
  • Artificial Intelligence

Fingerprint Dive into the research topics of 'On Polynomial-Time Learnability in the Limit of Strictly Deterministic Automata'. Together they form a unique fingerprint.

  • Cite this