ON SPIRAL FOLDING OF PLANAR MEMBRANES WITH FINITE THICKNESS AND CURVED CREASES

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Spiral folding of flat and planar membranes with finite thickness is of relevant interest to develop the spin-type deployable membrane structures for space environments and for consumer applications. Examples involve the design and development of origami-based structures, airbags, antenna design, wrapping of food by thin membranes, wheel design, and membrane deployment for medical applications. In this paper, we propose the governing equations to fold planar membranes with finite thickness by using curved creases, whose governing equations render fold patterns whose radius of curvature tends to increase linearly by accommodating membrane thickness. The consideration of curvature along in the crease patterns is relevant and potential to balance the tension of outer layers with the compression of inner layers, and to distribute the out-of plane and localized bending near the creases and vertices. We present the mathematical formulations that consider the curved creases and describe folding examples of a planar membrane with a defined thickness. Our computational experiments have shown (1) the versatility to model a plural number of curvature profiles, and (2) the feasibility of global deployment by using the compliant and explicit numerical simulations. From viewpoints of configuration and deployment performance, the curved crease patterns are potential to extend the versatility and smoothness of spiral folding mechanisms.

Original languageEnglish
Title of host publication48th Design Automation Conference (DAC)
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791886236
DOIs
Publication statusPublished - 2022
EventASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2022 - St. Louis, United States
Duration: 2022 Aug 142022 Aug 17

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3-B

Conference

ConferenceASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC-CIE 2022
Country/TerritoryUnited States
CitySt. Louis
Period22/8/1422/8/17

ASJC Scopus subject areas

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'ON SPIRAL FOLDING OF PLANAR MEMBRANES WITH FINITE THICKNESS AND CURVED CREASES'. Together they form a unique fingerprint.

Cite this