On the growth of hyperbolic 3-dimensional generalized simplex reflection groups

Yohei Komori, Yuriko Umemoto

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

We prove that the growth rates of three-dimensional generalized simplex reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four generators are always Perron numbers.

Original languageEnglish
Pages (from-to)62-65
Number of pages4
JournalProceedings of the Japan Academy Series A: Mathematical Sciences
Volume88
Issue number4
DOIs
Publication statusPublished - 2012
Externally publishedYes

Fingerprint

Reflection Group
Hyperbolic Groups
Three-dimensional
Coxeter Group
Generator

Keywords

  • Coxeter group
  • Growth function
  • Perron number

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On the growth of hyperbolic 3-dimensional generalized simplex reflection groups. / Komori, Yohei; Umemoto, Yuriko.

In: Proceedings of the Japan Academy Series A: Mathematical Sciences, Vol. 88, No. 4, 2012, p. 62-65.

Research output: Contribution to journalArticle

@article{035382bfacec433ea7e31b53d389172b,
title = "On the growth of hyperbolic 3-dimensional generalized simplex reflection groups",
abstract = "We prove that the growth rates of three-dimensional generalized simplex reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four generators are always Perron numbers.",
keywords = "Coxeter group, Growth function, Perron number",
author = "Yohei Komori and Yuriko Umemoto",
year = "2012",
doi = "10.3792/pjaa.88.62",
language = "English",
volume = "88",
pages = "62--65",
journal = "Proceedings of the Japan Academy Series A: Mathematical Sciences",
issn = "0386-2194",
publisher = "Japan Academy",
number = "4",

}

TY - JOUR

T1 - On the growth of hyperbolic 3-dimensional generalized simplex reflection groups

AU - Komori, Yohei

AU - Umemoto, Yuriko

PY - 2012

Y1 - 2012

N2 - We prove that the growth rates of three-dimensional generalized simplex reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four generators are always Perron numbers.

AB - We prove that the growth rates of three-dimensional generalized simplex reflection groups, i.e. three-dimensional non-compact hyperbolic Coxeter groups with four generators are always Perron numbers.

KW - Coxeter group

KW - Growth function

KW - Perron number

UR - http://www.scopus.com/inward/record.url?scp=84862977103&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862977103&partnerID=8YFLogxK

U2 - 10.3792/pjaa.88.62

DO - 10.3792/pjaa.88.62

M3 - Article

VL - 88

SP - 62

EP - 65

JO - Proceedings of the Japan Academy Series A: Mathematical Sciences

JF - Proceedings of the Japan Academy Series A: Mathematical Sciences

SN - 0386-2194

IS - 4

ER -