On the iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p)

Takashi Fukuda, Keiichi Komatsu

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    We study the Iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p) for an odd prime number p which satisfies p ≡ 1 (mod 16) relating it to units having certain properties. We give an upper bound of λ and show λ = 0 in certain cases. We also give new numerical examples of λ = 0.

    Original languageEnglish
    Pages (from-to)1797-1808
    Number of pages12
    JournalMathematics of Computation
    Volume78
    Issue number267
    DOIs
    Publication statusPublished - 2009 Jul

    Fingerprint

    Iwasawa Invariants
    Cyclotomic
    Odd number
    Prime number
    Upper bound
    Numerical Examples
    Unit

    Keywords

    • Iwasawa invariants
    • Real quadratic fields

    ASJC Scopus subject areas

    • Algebra and Number Theory
    • Applied Mathematics
    • Computational Mathematics

    Cite this

    On the iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p). / Fukuda, Takashi; Komatsu, Keiichi.

    In: Mathematics of Computation, Vol. 78, No. 267, 07.2009, p. 1797-1808.

    Research output: Contribution to journalArticle

    Fukuda, Takashi ; Komatsu, Keiichi. / On the iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p). In: Mathematics of Computation. 2009 ; Vol. 78, No. 267. pp. 1797-1808.
    @article{c541add0d912410eaac13dba38d8b662,
    title = "On the iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p)",
    abstract = "We study the Iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p) for an odd prime number p which satisfies p ≡ 1 (mod 16) relating it to units having certain properties. We give an upper bound of λ and show λ = 0 in certain cases. We also give new numerical examples of λ = 0.",
    keywords = "Iwasawa invariants, Real quadratic fields",
    author = "Takashi Fukuda and Keiichi Komatsu",
    year = "2009",
    month = "7",
    doi = "10.1090/S0025-5718-09-02124-3",
    language = "English",
    volume = "78",
    pages = "1797--1808",
    journal = "Mathematics of Computation",
    issn = "0025-5718",
    publisher = "American Mathematical Society",
    number = "267",

    }

    TY - JOUR

    T1 - On the iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p)

    AU - Fukuda, Takashi

    AU - Komatsu, Keiichi

    PY - 2009/7

    Y1 - 2009/7

    N2 - We study the Iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p) for an odd prime number p which satisfies p ≡ 1 (mod 16) relating it to units having certain properties. We give an upper bound of λ and show λ = 0 in certain cases. We also give new numerical examples of λ = 0.

    AB - We study the Iwasawa λ-invariant of the cyclotomic Z{double-struck}2-extension of Q{double-struck}(√p) for an odd prime number p which satisfies p ≡ 1 (mod 16) relating it to units having certain properties. We give an upper bound of λ and show λ = 0 in certain cases. We also give new numerical examples of λ = 0.

    KW - Iwasawa invariants

    KW - Real quadratic fields

    UR - http://www.scopus.com/inward/record.url?scp=67749118195&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=67749118195&partnerID=8YFLogxK

    U2 - 10.1090/S0025-5718-09-02124-3

    DO - 10.1090/S0025-5718-09-02124-3

    M3 - Article

    AN - SCOPUS:67749118195

    VL - 78

    SP - 1797

    EP - 1808

    JO - Mathematics of Computation

    JF - Mathematics of Computation

    SN - 0025-5718

    IS - 267

    ER -