On the space curves with the same image under the gauss maps

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

From an irreducible complete immersed curve X in a projective space ℙ other than a line, one obtains a curve X in a Graasmann manifold G of lines in ℙ that is the image of X under the Gauss map, which is defined by the embedded tangents of X. The main result of this article clarifies in case of positive characteristic what curves X have the same X′: It is shown that X is uniquely determined by X′ if X, or equivalently X′, has geometric genus at least two, and that for curves X 1 and X 2 with X 1 ≠X 2 in ℙ, if X′1 =X′2 in G and either X 1 or X 2 is reflexive, then both X 1 and X 2 are rational or supersingular elliptic; moreover, examples of smooth X 1 and X 2 in that case are given.

Original languageEnglish
Pages (from-to)249-258
Number of pages10
JournalManuscripta Mathematica
Volume80
Issue number1
DOIs
Publication statusPublished - 1993 Dec
Externally publishedYes

Fingerprint

Gauss Map
Space Curve
Curve
G-manifolds
Line
Positive Characteristic
Projective Space
Tangent line
Genus

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

On the space curves with the same image under the gauss maps. / Kaji, Hajime.

In: Manuscripta Mathematica, Vol. 80, No. 1, 12.1993, p. 249-258.

Research output: Contribution to journalArticle

@article{50c5a1ab57a04d81a16e64faf462787c,
title = "On the space curves with the same image under the gauss maps",
abstract = "From an irreducible complete immersed curve X in a projective space ℙ other than a line, one obtains a curve X ′ in a Graasmann manifold G of lines in ℙ that is the image of X under the Gauss map, which is defined by the embedded tangents of X. The main result of this article clarifies in case of positive characteristic what curves X have the same X′: It is shown that X is uniquely determined by X′ if X, or equivalently X′, has geometric genus at least two, and that for curves X 1 and X 2 with X 1 ≠X 2 in ℙ, if X′1 =X′2 in G and either X 1 or X 2 is reflexive, then both X 1 and X 2 are rational or supersingular elliptic; moreover, examples of smooth X 1 and X 2 in that case are given.",
author = "Hajime Kaji",
year = "1993",
month = "12",
doi = "10.1007/BF03026550",
language = "English",
volume = "80",
pages = "249--258",
journal = "Manuscripta Mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1",

}

TY - JOUR

T1 - On the space curves with the same image under the gauss maps

AU - Kaji, Hajime

PY - 1993/12

Y1 - 1993/12

N2 - From an irreducible complete immersed curve X in a projective space ℙ other than a line, one obtains a curve X ′ in a Graasmann manifold G of lines in ℙ that is the image of X under the Gauss map, which is defined by the embedded tangents of X. The main result of this article clarifies in case of positive characteristic what curves X have the same X′: It is shown that X is uniquely determined by X′ if X, or equivalently X′, has geometric genus at least two, and that for curves X 1 and X 2 with X 1 ≠X 2 in ℙ, if X′1 =X′2 in G and either X 1 or X 2 is reflexive, then both X 1 and X 2 are rational or supersingular elliptic; moreover, examples of smooth X 1 and X 2 in that case are given.

AB - From an irreducible complete immersed curve X in a projective space ℙ other than a line, one obtains a curve X ′ in a Graasmann manifold G of lines in ℙ that is the image of X under the Gauss map, which is defined by the embedded tangents of X. The main result of this article clarifies in case of positive characteristic what curves X have the same X′: It is shown that X is uniquely determined by X′ if X, or equivalently X′, has geometric genus at least two, and that for curves X 1 and X 2 with X 1 ≠X 2 in ℙ, if X′1 =X′2 in G and either X 1 or X 2 is reflexive, then both X 1 and X 2 are rational or supersingular elliptic; moreover, examples of smooth X 1 and X 2 in that case are given.

UR - http://www.scopus.com/inward/record.url?scp=65749309694&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65749309694&partnerID=8YFLogxK

U2 - 10.1007/BF03026550

DO - 10.1007/BF03026550

M3 - Article

VL - 80

SP - 249

EP - 258

JO - Manuscripta Mathematica

JF - Manuscripta Mathematica

SN - 0025-2611

IS - 1

ER -