One rotary mechanism for F1-ATPaSe over ATP concentrations from millimolar down to nanomolar

Naoyoshi Sakaki, Rieko Shimo-Kon, Kengo Adachi, Hiroyasu Ito, Shou Furuike, Eiro Muneyuki, Masasuke Yoshida, Kazuhiko Kinosita*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

71 Citations (Scopus)


F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β 3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M -1s-1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ∼40 pN-nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.

Original languageEnglish
Pages (from-to)2047-2056
Number of pages10
JournalBiophysical Journal
Issue number3
Publication statusPublished - 2005 Mar
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics


Dive into the research topics of 'One rotary mechanism for F1-ATPaSe over ATP concentrations from millimolar down to nanomolar'. Together they form a unique fingerprint.

Cite this