Open-end human-robot interaction from the dynamical systems perspective: Mutual adaptation and incremental learning

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

In this paper, we experimentally investigated the open-end interaction generated by the mutual adaptation between humans and robot. Its essential characteristic, incremental learning, is examined using the dynamical systems approach. Our research concentrated on the navigation system of a specially developed humanoid robot called Robovie and seven human subjects whose eyes were covered, making them dependent on the robot for directions. We used the usual feed-forward neural network (FFNN) without recursive connections and the recurrent neural network (RNN) for the robot control. Although the performances obtained with both the RNN and the FFNN improved in the early stages of learning, as the subject changed the operation by learning on its own, all performances gradually became unstable and failed. Next, we used a 'consolidation-learning algorithm' as a model of the hippocampus in the brain. In this method, the RNN was trained by both new data and the rehearsal outputs of the RNN not to damage the contents of current memory. The proposed method enabled the robot to improve performance even when learning continued for a long time (openend). The dynamical systems analysis of RNNs supports these differences and also showed that the collaboration scheme was developed dynamically along with succeeding phase transitions.

Original languageEnglish
Pages (from-to)651-670
Number of pages20
JournalAdvanced Robotics
Volume19
Issue number6
DOIs
Publication statusPublished - 2005 Aug 3

Keywords

  • Consolidation learning
  • Dynamical systems
  • Incremantal learning
  • Mutual adaptation
  • Open-end human-robot interaction
  • Recurrent neural network

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Human-Computer Interaction
  • Hardware and Architecture
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Open-end human-robot interaction from the dynamical systems perspective: Mutual adaptation and incremental learning'. Together they form a unique fingerprint.

  • Cite this