Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics

Guo Wei Lu, Takahide Sakamoto, Tetsuya Kawanishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To scale up the capacity and spectrum efficiency in optical transmission systems, high-order quadrature-amplitude modulation (QAM), has raised a lot of research attention. Recently, optical 32 or 36QAM has been deployed to realize high spectrum-efficient Nyquist wavelength-division multiplexing transmission with spectral efficiency of up to 8.37b/s/Hz [1-2]. Usually optical 32 or 36QAM is synthesized using a single in-phase/quadrature (IQ) modulator driven by 6-level driving electronics, which is referred to as 'electrical' approach here. Although the single IQ modulator solution has a simple optical hardware, it requires sophisticated technique for preparing superior-quality 6-level electronics by either combining three binary electrical signals or deploying high-speed digital-to-analog converters (DACs). The operation symbol-rate is restricted by the DACs resolution, linearity of driver amplifiers or bandwidth of electrical components. On the other hand, the tandem-modulator approach, a serial combination of IQ modulators has been utilized for synthesizing various multilevel optical signals such as 8QAM and 16QAM [3], where only binary electronics are deployed to drive each modulator. If extending this scheme to generate higher-order QAM, we can also benefit from the reduced complexity in driving electronics. Instead of preparing superior-quality 6-level electronics for generating 36QAM, just binary and 3-level electronics are required. In contrast to the 'electrical' [1-2] approach, the proposed scheme provides an alternative approach to synthesize high-order QAM with simplified driving electronics.

Original languageEnglish
Title of host publication2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013
PublisherIEEE Computer Society
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013 - Munich, Germany
Duration: 2013 May 122013 May 16

Other

Other2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013
CountryGermany
CityMunich
Period13/5/1213/5/16

Fingerprint

Modulators
Electronic equipment
Quadrature amplitude modulation
Digital to analog conversion
Light transmission
Optical transmitters
Wavelength division multiplexing
Hardware
Bandwidth

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Cite this

Lu, G. W., Sakamoto, T., & Kawanishi, T. (2013). Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics. In 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013 [6801250] IEEE Computer Society. https://doi.org/10.1109/CLEOE-IQEC.2013.6801250

Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics. / Lu, Guo Wei; Sakamoto, Takahide; Kawanishi, Tetsuya.

2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013. IEEE Computer Society, 2013. 6801250.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Lu, GW, Sakamoto, T & Kawanishi, T 2013, Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics. in 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013., 6801250, IEEE Computer Society, 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013, Munich, Germany, 13/5/12. https://doi.org/10.1109/CLEOE-IQEC.2013.6801250
Lu GW, Sakamoto T, Kawanishi T. Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics. In 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013. IEEE Computer Society. 2013. 6801250 https://doi.org/10.1109/CLEOE-IQEC.2013.6801250
Lu, Guo Wei ; Sakamoto, Takahide ; Kawanishi, Tetsuya. / Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics. 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013. IEEE Computer Society, 2013.
@inproceedings{8ee48a9fa4e04130b34eb4597c865448,
title = "Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics",
abstract = "To scale up the capacity and spectrum efficiency in optical transmission systems, high-order quadrature-amplitude modulation (QAM), has raised a lot of research attention. Recently, optical 32 or 36QAM has been deployed to realize high spectrum-efficient Nyquist wavelength-division multiplexing transmission with spectral efficiency of up to 8.37b/s/Hz [1-2]. Usually optical 32 or 36QAM is synthesized using a single in-phase/quadrature (IQ) modulator driven by 6-level driving electronics, which is referred to as 'electrical' approach here. Although the single IQ modulator solution has a simple optical hardware, it requires sophisticated technique for preparing superior-quality 6-level electronics by either combining three binary electrical signals or deploying high-speed digital-to-analog converters (DACs). The operation symbol-rate is restricted by the DACs resolution, linearity of driver amplifiers or bandwidth of electrical components. On the other hand, the tandem-modulator approach, a serial combination of IQ modulators has been utilized for synthesizing various multilevel optical signals such as 8QAM and 16QAM [3], where only binary electronics are deployed to drive each modulator. If extending this scheme to generate higher-order QAM, we can also benefit from the reduced complexity in driving electronics. Instead of preparing superior-quality 6-level electronics for generating 36QAM, just binary and 3-level electronics are required. In contrast to the 'electrical' [1-2] approach, the proposed scheme provides an alternative approach to synthesize high-order QAM with simplified driving electronics.",
author = "Lu, {Guo Wei} and Takahide Sakamoto and Tetsuya Kawanishi",
year = "2013",
doi = "10.1109/CLEOE-IQEC.2013.6801250",
language = "English",
booktitle = "2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013",
publisher = "IEEE Computer Society",

}

TY - GEN

T1 - Optical 36QAM transmitter based on two tandem IQ modulators with simplified driving electronics

AU - Lu, Guo Wei

AU - Sakamoto, Takahide

AU - Kawanishi, Tetsuya

PY - 2013

Y1 - 2013

N2 - To scale up the capacity and spectrum efficiency in optical transmission systems, high-order quadrature-amplitude modulation (QAM), has raised a lot of research attention. Recently, optical 32 or 36QAM has been deployed to realize high spectrum-efficient Nyquist wavelength-division multiplexing transmission with spectral efficiency of up to 8.37b/s/Hz [1-2]. Usually optical 32 or 36QAM is synthesized using a single in-phase/quadrature (IQ) modulator driven by 6-level driving electronics, which is referred to as 'electrical' approach here. Although the single IQ modulator solution has a simple optical hardware, it requires sophisticated technique for preparing superior-quality 6-level electronics by either combining three binary electrical signals or deploying high-speed digital-to-analog converters (DACs). The operation symbol-rate is restricted by the DACs resolution, linearity of driver amplifiers or bandwidth of electrical components. On the other hand, the tandem-modulator approach, a serial combination of IQ modulators has been utilized for synthesizing various multilevel optical signals such as 8QAM and 16QAM [3], where only binary electronics are deployed to drive each modulator. If extending this scheme to generate higher-order QAM, we can also benefit from the reduced complexity in driving electronics. Instead of preparing superior-quality 6-level electronics for generating 36QAM, just binary and 3-level electronics are required. In contrast to the 'electrical' [1-2] approach, the proposed scheme provides an alternative approach to synthesize high-order QAM with simplified driving electronics.

AB - To scale up the capacity and spectrum efficiency in optical transmission systems, high-order quadrature-amplitude modulation (QAM), has raised a lot of research attention. Recently, optical 32 or 36QAM has been deployed to realize high spectrum-efficient Nyquist wavelength-division multiplexing transmission with spectral efficiency of up to 8.37b/s/Hz [1-2]. Usually optical 32 or 36QAM is synthesized using a single in-phase/quadrature (IQ) modulator driven by 6-level driving electronics, which is referred to as 'electrical' approach here. Although the single IQ modulator solution has a simple optical hardware, it requires sophisticated technique for preparing superior-quality 6-level electronics by either combining three binary electrical signals or deploying high-speed digital-to-analog converters (DACs). The operation symbol-rate is restricted by the DACs resolution, linearity of driver amplifiers or bandwidth of electrical components. On the other hand, the tandem-modulator approach, a serial combination of IQ modulators has been utilized for synthesizing various multilevel optical signals such as 8QAM and 16QAM [3], where only binary electronics are deployed to drive each modulator. If extending this scheme to generate higher-order QAM, we can also benefit from the reduced complexity in driving electronics. Instead of preparing superior-quality 6-level electronics for generating 36QAM, just binary and 3-level electronics are required. In contrast to the 'electrical' [1-2] approach, the proposed scheme provides an alternative approach to synthesize high-order QAM with simplified driving electronics.

UR - http://www.scopus.com/inward/record.url?scp=84900331621&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84900331621&partnerID=8YFLogxK

U2 - 10.1109/CLEOE-IQEC.2013.6801250

DO - 10.1109/CLEOE-IQEC.2013.6801250

M3 - Conference contribution

BT - 2013 Conference on Lasers and Electro-Optics Europe and International Quantum Electronics Conference, CLEO/Europe-IQEC 2013

PB - IEEE Computer Society

ER -