Optical imaging of muons

Seiichi Yamamoto*, Kazuhiko Ninomiya, Naritoshi Kawamura, Yoshiyuki Hirano

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Optical imaging of particle beams is a promising method for range and width estimations. However it was not clear that optical imaging was possible for muons. To clarify this, we conducted optical imaging of muons, since high-intensity muons are now available at J-PARC. We irradiated positive muons with different momenta to water or plastic scintillator block, and imaged using a charge-coupled device (CCD) camera during irradiation. The water and plastic scintillator block produced quite different images. The images of water during irradiation of muons produced elliptical shape light distribution at the end of the ranges due to Cherenkov-light from the positrons produced by positive muon decay, while, for the plastic scintillator block, we measured images similar to the dose distributions. We were able to estimate the ranges of muons as well as the measurement of the asymmetry of the direction of the positron emission by the muon decays from the optical images of the water, although the measured ranges were 4 mm to 5 mm larger than the calculated values. The ranges and widths of the beams could also be estimated from the optical images of the plastic scintillator block. We confirmed that optical imaging of muons was possible and is a promising method for the quality assessment, research of muons, and the future muon radiotherapy.

Original languageEnglish
Article number20790
JournalScientific reports
Volume10
Issue number1
DOIs
Publication statusPublished - 2020 Dec
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Optical imaging of muons'. Together they form a unique fingerprint.

Cite this