Optimal random search using limited spatial memory

Tomoko Sakiyama, Yukio Gunji

    Research output: Contribution to journalArticle

    1 Citation (Scopus)


    Lévy walks are known to be efficient movements because Lévy walkers search wide areas while restricting returns to previously visited sites. A self-avoiding walk (SAW) is a series of moves on a lattice that visit the same place only once. As such, SAWs can also be effective search algorithms. However, it is not realistic that foragers memorize many visited positions for a long time. In this work, we investigated whether foragers performed optimal searches when having limited memory. The agent in our model followed SAWs to some extent by memorizing and avoiding visited places. However, the agent lost its memory after a while. In that situation, the agent changed its reactions to visited patches by considering global trail patterns based on local memorized information. As a result, we succeeded in making the agent occasionally produce ballistic walks related to power-law tailed movements across some ranges.

    Original languageEnglish
    Article number171057
    JournalRoyal Society Open Science
    Issue number3
    Publication statusPublished - 2018 Mar 7


    • Foraging
    • Movement strategy
    • Power law

    ASJC Scopus subject areas

    • General

    Fingerprint Dive into the research topics of 'Optimal random search using limited spatial memory'. Together they form a unique fingerprint.

  • Cite this