Optimization of overtraining and overgeneration

Goutam Chakraborty*, Norio Shiratori, Shoichi Noguchi

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    1 Citation (Scopus)

    Abstract

    The task of any supervised classifier is to assign optimum boundaries in the input space, for the different class membership. This is done using informations from the available set of known samples. This mapping of sample position in the input space to sample class is further used to classify unknown samples. The available set of known sample is generally a finite set. A boundary exactly defined by those finite sample set is usually not the best boundary to classify the new unknown samples. We end up with a overfitted boundary i.e. a overtrained classifier, resulting in poor classification for unknown new samples. We therefore need to smooth the boundary to be able to generalize for the unknown samples. But to what extent? If we smooth the boundary too much, we will not be exploiting all the class informations contained in the known sample set, and the classification result will again be poor. Depending on the number of known samples and the dimension of the actual solution (which, of course, is not known in any of the practical problems), there will be a certain amount of smoothness, which is optimum for generalization. In this paper, we are trying to focus on this problem. We introduce some practical ways to arrive at optimum smoothness, with regards to single hidden layer neural network classifier using radial basis function.

    Original languageEnglish
    Title of host publicationProceedings of the International Joint Conference on Neural Networks
    Place of PublicationPiscataway, NJ, United States
    PublisherPubl by IEEE
    Pages2257-2262
    Number of pages6
    Volume3
    ISBN (Print)0780314212, 9780780314214
    Publication statusPublished - 1993
    EventProceedings of 1993 International Joint Conference on Neural Networks. Part 1 (of 3) - Nagoya, Jpn
    Duration: 1993 Oct 251993 Oct 29

    Other

    OtherProceedings of 1993 International Joint Conference on Neural Networks. Part 1 (of 3)
    CityNagoya, Jpn
    Period93/10/2593/10/29

    ASJC Scopus subject areas

    • Engineering(all)

    Fingerprint

    Dive into the research topics of 'Optimization of overtraining and overgeneration'. Together they form a unique fingerprint.

    Cite this