Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method

S. Tamitani, K. Tsuzaki, Shinji Wakao, T. Tokumasu, Y. Takahashi, A. Kameari, H. Igarashi, K. Fujiwara, Y. Ishihara

    Research output: Contribution to journalArticle

    10 Citations (Scopus)

    Abstract

    This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.

    Original languageEnglish
    Article number6136760
    Pages (from-to)363-366
    Number of pages4
    JournalIEEE Transactions on Magnetics
    Volume48
    Issue number2
    DOIs
    Publication statusPublished - 2012 Feb

    Fingerprint

    Magnetic fields
    Finite element method

    Keywords

    • Improvement of the ICCG convergence
    • infinite edge element
    • open boundary
    • orthogonalization of Hilbert matrix

    ASJC Scopus subject areas

    • Electrical and Electronic Engineering
    • Electronic, Optical and Magnetic Materials

    Cite this

    Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method. / Tamitani, S.; Tsuzaki, K.; Wakao, Shinji; Tokumasu, T.; Takahashi, Y.; Kameari, A.; Igarashi, H.; Fujiwara, K.; Ishihara, Y.

    In: IEEE Transactions on Magnetics, Vol. 48, No. 2, 6136760, 02.2012, p. 363-366.

    Research output: Contribution to journalArticle

    Tamitani, S, Tsuzaki, K, Wakao, S, Tokumasu, T, Takahashi, Y, Kameari, A, Igarashi, H, Fujiwara, K & Ishihara, Y 2012, 'Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method', IEEE Transactions on Magnetics, vol. 48, no. 2, 6136760, pp. 363-366. https://doi.org/10.1109/TMAG.2011.2174342
    Tamitani, S. ; Tsuzaki, K. ; Wakao, Shinji ; Tokumasu, T. ; Takahashi, Y. ; Kameari, A. ; Igarashi, H. ; Fujiwara, K. ; Ishihara, Y. / Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method. In: IEEE Transactions on Magnetics. 2012 ; Vol. 48, No. 2. pp. 363-366.
    @article{ee019b10053b46f9ba4796e128e3c08d,
    title = "Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method",
    abstract = "This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.",
    keywords = "Improvement of the ICCG convergence, infinite edge element, open boundary, orthogonalization of Hilbert matrix",
    author = "S. Tamitani and K. Tsuzaki and Shinji Wakao and T. Tokumasu and Y. Takahashi and A. Kameari and H. Igarashi and K. Fujiwara and Y. Ishihara",
    year = "2012",
    month = "2",
    doi = "10.1109/TMAG.2011.2174342",
    language = "English",
    volume = "48",
    pages = "363--366",
    journal = "IEEE Transactions on Magnetics",
    issn = "0018-9464",
    publisher = "Institute of Electrical and Electronics Engineers Inc.",
    number = "2",

    }

    TY - JOUR

    T1 - Orthogonalized infinite edge element methodconvergence improvement by orthogonalization of hilbert matrix in infinite edge element method

    AU - Tamitani, S.

    AU - Tsuzaki, K.

    AU - Wakao, Shinji

    AU - Tokumasu, T.

    AU - Takahashi, Y.

    AU - Kameari, A.

    AU - Igarashi, H.

    AU - Fujiwara, K.

    AU - Ishihara, Y.

    PY - 2012/2

    Y1 - 2012/2

    N2 - This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.

    AB - This paper proposes an orthogonalization of the Hilbert matrix in element matrices of the infinite edge elements. The validity of the infinite edge element is demonstrated in previous researches, but the Hilbert matrix results in extremely slow convergence in the ICCG method, especially when using higher order expansions. The proposed orthogonalization technique improves the convergence drastically and it makes the infinite elements practical in the electromagnetic FEM analysis of the open boundary problems in quasi-static magnetic fields.

    KW - Improvement of the ICCG convergence

    KW - infinite edge element

    KW - open boundary

    KW - orthogonalization of Hilbert matrix

    UR - http://www.scopus.com/inward/record.url?scp=84856395165&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84856395165&partnerID=8YFLogxK

    U2 - 10.1109/TMAG.2011.2174342

    DO - 10.1109/TMAG.2011.2174342

    M3 - Article

    AN - SCOPUS:84856395165

    VL - 48

    SP - 363

    EP - 366

    JO - IEEE Transactions on Magnetics

    JF - IEEE Transactions on Magnetics

    SN - 0018-9464

    IS - 2

    M1 - 6136760

    ER -