Abstract
We study a vacuum Bianchi IX universe in the context of Hořava-Lifshitz gravity. In particular, we focus on the classical dynamics of the universe and analyze how anisotropy changes the history of the universe. For small anisotropy, we find an oscillating universe as well as a bounce universe just as the case of the Friedmann-Lemaitre-Robertson-Walker spacetime. However, if the initial anisotropy is large, we find the universe which ends up with a big crunch after oscillations if a cosmological constant Λ is zero or negative. For Λ>0, we find a variety of histories of the universe, that is a de Sitter expanding universe after oscillations in addition to the oscillating solution and the previous big crunch solution. This fate of the universe shows sensitive dependence of initial conditions, which is one of the typical properties of a chaotic system. If the initial anisotropy is near the upper bound, we find the universe starting from a big bang and ending up with a big crunch for Λ≤0, and a de Sitter expanding universe starting from a big bang for Λ>0.
Original language | English |
---|---|
Article number | 064030 |
Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |
Volume | 84 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 Sept 20 |
Externally published | Yes |
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)