TY - JOUR
T1 - Out-of-plane deformation due to the ply angle misalignment in cfrp laminates (the effect of the stacking sequence on thermal deformation)
AU - Arao, Yoshihiko
AU - Koyanagi, Jun
AU - Takeda, Shin Ichi
AU - Utsunomwa, Shin
AU - Kawada, Niroyuki
N1 - Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2011
Y1 - 2011
N2 - Strict geometrical stability is required for the precise structures like telescopes. Unpredictable out-of-plane deformation is a serious problem when we use CFRP (Carbon Fiber Reinforced Plastic) laminate to the precise structure. This out-of plane deformation of symmetrical CFRP laminate mainly arise from combination effects of ply angle misalignment and temperature change. We discussed here is effective stacking sequence of CFRP laminate that mitigate the deformation caused by the ply angle misalignment. The analysis based on laminate theory was performed to calculate the thermal deformation. In this analysis, the random numbers were added to each layers as ply angle misalignments. The analytical results were obtained statistically by Monte Carlo method. Mohr's curvature circle was also incorporated to evaluate the deformation as P-V (peak to Valley) values. We performed the analysis with various stacking sequence. It was calculated that the symmetric cross-ply laminates deformed 10 times larger than the other quasi-symmetric laminates. In the case of the total ply number is less than 12, the stacking sequence in the laminate has a significant effects on the thermal deformation. However, if the total number ply number is more than 24, effect of stacking sequence on the thermal deformation becomes negligible. We also discussed the geometrical stability of CFRP mirror by considering unavoidable ply angle misalignment. It was presumed that the CFRP mirror can be used for wide range of wave length when the back structure was attached to CFRP laminates.
AB - Strict geometrical stability is required for the precise structures like telescopes. Unpredictable out-of-plane deformation is a serious problem when we use CFRP (Carbon Fiber Reinforced Plastic) laminate to the precise structure. This out-of plane deformation of symmetrical CFRP laminate mainly arise from combination effects of ply angle misalignment and temperature change. We discussed here is effective stacking sequence of CFRP laminate that mitigate the deformation caused by the ply angle misalignment. The analysis based on laminate theory was performed to calculate the thermal deformation. In this analysis, the random numbers were added to each layers as ply angle misalignments. The analytical results were obtained statistically by Monte Carlo method. Mohr's curvature circle was also incorporated to evaluate the deformation as P-V (peak to Valley) values. We performed the analysis with various stacking sequence. It was calculated that the symmetric cross-ply laminates deformed 10 times larger than the other quasi-symmetric laminates. In the case of the total ply number is less than 12, the stacking sequence in the laminate has a significant effects on the thermal deformation. However, if the total number ply number is more than 24, effect of stacking sequence on the thermal deformation becomes negligible. We also discussed the geometrical stability of CFRP mirror by considering unavoidable ply angle misalignment. It was presumed that the CFRP mirror can be used for wide range of wave length when the back structure was attached to CFRP laminates.
KW - Carbon Fiber
KW - Composite Material
KW - Dimensional Stability
KW - Laminated Construction
KW - Thermal Deformation
UR - http://www.scopus.com/inward/record.url?scp=84856452299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856452299&partnerID=8YFLogxK
U2 - 10.1299/kikaia.77.619
DO - 10.1299/kikaia.77.619
M3 - Article
AN - SCOPUS:84856452299
VL - 77
SP - 619
EP - 628
JO - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
JF - Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
SN - 0387-5008
IS - 776
ER -