Performance comparison of finely pixelated LYSO- and GAGG-based Si-PM gamma cameras for high resolution SPECT

Kouhei Nakanishi, Seiichi Yamamoto, Jun Kataoka

    Research output: Contribution to journalArticle

    5 Citations (Scopus)

    Abstract

    Although Lu-based scintillators, including Ce-doped Lu1.8Y0.2SiO5 (LYSO) scintillators, are often used for positron emission tomography (PET) detectors, they are not commonly used in gamma cameras for single-photon emission computed tomography (SPECT) because background counts due to contamination of the natural radioisotope in Lu are detected. However, several studies report that deterioration in image contrast due to background counts of the natural radioisotope is not critical and thus LYSO is promising for use in SPECT detectors. Meanwhile, a new scintillator, the Ce-doped Gd3Al2Ga3O12 (GAGG) with a high light yield and no natural radioisotope, has been developed and is also thought to be a promising scintillator. Thus, we compared the performance of LYSO with that of GAGG to determine which is more appropriate for a silicon photomultiplier (Si-PM)-based high-resolution small field-of-view (FOV) gamma camera for SPECT. We used finely pixelated LYSO and GAGG plates that were optically coupled to Si-PM arrays to form gamma cameras and measured the basic performance for 122-keV gamma photons. The energy resolutions of the LYSO- and GAGG-based Si-PM gamma cameras were 30% and 23% full width at half maximum (FWHM), respectively. The intrinsic spatial resolution of the GAGG (∼0.5mm FWHM) based gamma camera was better than that of the LYSO (∼0.6mm FWHM). The background counts of the LYSO-based gamma camera were 28 times larger than that of the GAGG. Based on these results, we conclude that GAGG is more appropriate than LYSO for the development of a Si-PM based gamma camera for high resolution SPECT.

    Original languageEnglish
    Pages (from-to)107-111
    Number of pages5
    JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Volume872
    DOIs
    Publication statusPublished - 2017 Nov 11

    Fingerprint

    Single photon emission computed tomography
    Photomultipliers
    tomography
    Cameras
    cameras
    Silicon
    high resolution
    photons
    Phosphors
    silicon
    scintillation counters
    Full width at half maximum
    Radioisotopes
    Detectors
    Positron emission tomography
    detectors
    image contrast
    deterioration
    field of view
    Deterioration

    Keywords

    • GAGG
    • Gamma camera
    • LYSO
    • Si-PM
    • SPECT

    ASJC Scopus subject areas

    • Nuclear and High Energy Physics
    • Instrumentation

    Cite this

    @article{fca38e6c993144cf974814a1aeec43a9,
    title = "Performance comparison of finely pixelated LYSO- and GAGG-based Si-PM gamma cameras for high resolution SPECT",
    abstract = "Although Lu-based scintillators, including Ce-doped Lu1.8Y0.2SiO5 (LYSO) scintillators, are often used for positron emission tomography (PET) detectors, they are not commonly used in gamma cameras for single-photon emission computed tomography (SPECT) because background counts due to contamination of the natural radioisotope in Lu are detected. However, several studies report that deterioration in image contrast due to background counts of the natural radioisotope is not critical and thus LYSO is promising for use in SPECT detectors. Meanwhile, a new scintillator, the Ce-doped Gd3Al2Ga3O12 (GAGG) with a high light yield and no natural radioisotope, has been developed and is also thought to be a promising scintillator. Thus, we compared the performance of LYSO with that of GAGG to determine which is more appropriate for a silicon photomultiplier (Si-PM)-based high-resolution small field-of-view (FOV) gamma camera for SPECT. We used finely pixelated LYSO and GAGG plates that were optically coupled to Si-PM arrays to form gamma cameras and measured the basic performance for 122-keV gamma photons. The energy resolutions of the LYSO- and GAGG-based Si-PM gamma cameras were 30{\%} and 23{\%} full width at half maximum (FWHM), respectively. The intrinsic spatial resolution of the GAGG (∼0.5mm FWHM) based gamma camera was better than that of the LYSO (∼0.6mm FWHM). The background counts of the LYSO-based gamma camera were 28 times larger than that of the GAGG. Based on these results, we conclude that GAGG is more appropriate than LYSO for the development of a Si-PM based gamma camera for high resolution SPECT.",
    keywords = "GAGG, Gamma camera, LYSO, Si-PM, SPECT",
    author = "Kouhei Nakanishi and Seiichi Yamamoto and Jun Kataoka",
    year = "2017",
    month = "11",
    day = "11",
    doi = "10.1016/j.nima.2017.08.013",
    language = "English",
    volume = "872",
    pages = "107--111",
    journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
    issn = "0168-9002",
    publisher = "Elsevier",

    }

    TY - JOUR

    T1 - Performance comparison of finely pixelated LYSO- and GAGG-based Si-PM gamma cameras for high resolution SPECT

    AU - Nakanishi, Kouhei

    AU - Yamamoto, Seiichi

    AU - Kataoka, Jun

    PY - 2017/11/11

    Y1 - 2017/11/11

    N2 - Although Lu-based scintillators, including Ce-doped Lu1.8Y0.2SiO5 (LYSO) scintillators, are often used for positron emission tomography (PET) detectors, they are not commonly used in gamma cameras for single-photon emission computed tomography (SPECT) because background counts due to contamination of the natural radioisotope in Lu are detected. However, several studies report that deterioration in image contrast due to background counts of the natural radioisotope is not critical and thus LYSO is promising for use in SPECT detectors. Meanwhile, a new scintillator, the Ce-doped Gd3Al2Ga3O12 (GAGG) with a high light yield and no natural radioisotope, has been developed and is also thought to be a promising scintillator. Thus, we compared the performance of LYSO with that of GAGG to determine which is more appropriate for a silicon photomultiplier (Si-PM)-based high-resolution small field-of-view (FOV) gamma camera for SPECT. We used finely pixelated LYSO and GAGG plates that were optically coupled to Si-PM arrays to form gamma cameras and measured the basic performance for 122-keV gamma photons. The energy resolutions of the LYSO- and GAGG-based Si-PM gamma cameras were 30% and 23% full width at half maximum (FWHM), respectively. The intrinsic spatial resolution of the GAGG (∼0.5mm FWHM) based gamma camera was better than that of the LYSO (∼0.6mm FWHM). The background counts of the LYSO-based gamma camera were 28 times larger than that of the GAGG. Based on these results, we conclude that GAGG is more appropriate than LYSO for the development of a Si-PM based gamma camera for high resolution SPECT.

    AB - Although Lu-based scintillators, including Ce-doped Lu1.8Y0.2SiO5 (LYSO) scintillators, are often used for positron emission tomography (PET) detectors, they are not commonly used in gamma cameras for single-photon emission computed tomography (SPECT) because background counts due to contamination of the natural radioisotope in Lu are detected. However, several studies report that deterioration in image contrast due to background counts of the natural radioisotope is not critical and thus LYSO is promising for use in SPECT detectors. Meanwhile, a new scintillator, the Ce-doped Gd3Al2Ga3O12 (GAGG) with a high light yield and no natural radioisotope, has been developed and is also thought to be a promising scintillator. Thus, we compared the performance of LYSO with that of GAGG to determine which is more appropriate for a silicon photomultiplier (Si-PM)-based high-resolution small field-of-view (FOV) gamma camera for SPECT. We used finely pixelated LYSO and GAGG plates that were optically coupled to Si-PM arrays to form gamma cameras and measured the basic performance for 122-keV gamma photons. The energy resolutions of the LYSO- and GAGG-based Si-PM gamma cameras were 30% and 23% full width at half maximum (FWHM), respectively. The intrinsic spatial resolution of the GAGG (∼0.5mm FWHM) based gamma camera was better than that of the LYSO (∼0.6mm FWHM). The background counts of the LYSO-based gamma camera were 28 times larger than that of the GAGG. Based on these results, we conclude that GAGG is more appropriate than LYSO for the development of a Si-PM based gamma camera for high resolution SPECT.

    KW - GAGG

    KW - Gamma camera

    KW - LYSO

    KW - Si-PM

    KW - SPECT

    UR - http://www.scopus.com/inward/record.url?scp=85027889544&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85027889544&partnerID=8YFLogxK

    U2 - 10.1016/j.nima.2017.08.013

    DO - 10.1016/j.nima.2017.08.013

    M3 - Article

    AN - SCOPUS:85027889544

    VL - 872

    SP - 107

    EP - 111

    JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

    JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

    SN - 0168-9002

    ER -