Performance improvement of RTK-GNSS with IMU and vehicle speed sensors in an urban environment

Nobuaki Kubo, Taro Suzuki

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The increasing demand for navigation and automation has led to the development of a number of accurate and precise navigation applications that make use of the Global Navigation Satellite System (GNSS) and additional sensors. One of the precise navigation techniques in GNSS, the real-time kinematic (RTK) technique, is well known. In this method, once the correct integer ambiguities are found in the carrier phase observation data, position can be determined to within 10 cm. In particular, the advent of QZSS and BeiDou satellites can increase the availability of RTK-GNSS (relative to RTK using only GPS). It is understood that the increasing availability of RTK-GNSS will improve the performance of the integration of GNSS with additional sensors because the errors due to the inertial measurement unit (IMU) accumulate as time goes on. On the other hand, GNSS tends to suffer from multipath errors, especially in urban environments. To overcome this problem, a method was developed for improving RTK-GNSS using a low-cost IMU and conventional vehicle speed sensors. In this study, the quality of the complete observation data was assessed based on the carrier-to-noise ratio and satellite elevation angle, and the least-squares ambiguity decorrelation adjustment method and the ratio test were used to obtain fixed positions. We used speed information obtained from Doppler measurements as an alternative source of information; information from the IMU and vehicle speed sensor (integrated with the RTK-GNSS via a Kalman Filter) was used when there were no visible satellites. We also used the IMU and vehicle speed sensors to detect wrong fixes in the RTK-GNSS. A position and orientation system for land vehicles (Applanix) was used to estimate the reference positions. During GNSS outages, it is important to accurately determine the last heading of the car for precise navigation. In this study, it was found that GNSS Doppler-based direction data are required to obtain better direction information. The results of the experiment demonstrate that our proposed method is, to some extent, beneficial as an alternative to the conventional RTK-GPS in an urban environment.

Original languageEnglish
Pages (from-to)217-224
Number of pages8
JournalIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
VolumeE99A
Issue number1
DOIs
Publication statusPublished - 2016 Jan 1

Fingerprint

Units of measurement
Navigation
Kinematics
Satellites
Real-time
Sensor
Unit
Sensors
Doppler
Global positioning system
Availability
Ratio test
Alternatives
Multipath
Accumulate
Outages
Kalman filters
Kalman Filter
Automation

Keywords

  • Loose coupling
  • Precise positioning
  • RTK-GNSS

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Graphics and Computer-Aided Design
  • Applied Mathematics
  • Signal Processing

Cite this

Performance improvement of RTK-GNSS with IMU and vehicle speed sensors in an urban environment. / Kubo, Nobuaki; Suzuki, Taro.

In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E99A, No. 1, 01.01.2016, p. 217-224.

Research output: Contribution to journalArticle

@article{b064016690ec4b938962301ca4812d62,
title = "Performance improvement of RTK-GNSS with IMU and vehicle speed sensors in an urban environment",
abstract = "The increasing demand for navigation and automation has led to the development of a number of accurate and precise navigation applications that make use of the Global Navigation Satellite System (GNSS) and additional sensors. One of the precise navigation techniques in GNSS, the real-time kinematic (RTK) technique, is well known. In this method, once the correct integer ambiguities are found in the carrier phase observation data, position can be determined to within 10 cm. In particular, the advent of QZSS and BeiDou satellites can increase the availability of RTK-GNSS (relative to RTK using only GPS). It is understood that the increasing availability of RTK-GNSS will improve the performance of the integration of GNSS with additional sensors because the errors due to the inertial measurement unit (IMU) accumulate as time goes on. On the other hand, GNSS tends to suffer from multipath errors, especially in urban environments. To overcome this problem, a method was developed for improving RTK-GNSS using a low-cost IMU and conventional vehicle speed sensors. In this study, the quality of the complete observation data was assessed based on the carrier-to-noise ratio and satellite elevation angle, and the least-squares ambiguity decorrelation adjustment method and the ratio test were used to obtain fixed positions. We used speed information obtained from Doppler measurements as an alternative source of information; information from the IMU and vehicle speed sensor (integrated with the RTK-GNSS via a Kalman Filter) was used when there were no visible satellites. We also used the IMU and vehicle speed sensors to detect wrong fixes in the RTK-GNSS. A position and orientation system for land vehicles (Applanix) was used to estimate the reference positions. During GNSS outages, it is important to accurately determine the last heading of the car for precise navigation. In this study, it was found that GNSS Doppler-based direction data are required to obtain better direction information. The results of the experiment demonstrate that our proposed method is, to some extent, beneficial as an alternative to the conventional RTK-GPS in an urban environment.",
keywords = "Loose coupling, Precise positioning, RTK-GNSS",
author = "Nobuaki Kubo and Taro Suzuki",
year = "2016",
month = "1",
day = "1",
doi = "10.1587/transfun.E99.A.217",
language = "English",
volume = "E99A",
pages = "217--224",
journal = "IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences",
issn = "0916-8508",
publisher = "Maruzen Co., Ltd/Maruzen Kabushikikaisha",
number = "1",

}

TY - JOUR

T1 - Performance improvement of RTK-GNSS with IMU and vehicle speed sensors in an urban environment

AU - Kubo, Nobuaki

AU - Suzuki, Taro

PY - 2016/1/1

Y1 - 2016/1/1

N2 - The increasing demand for navigation and automation has led to the development of a number of accurate and precise navigation applications that make use of the Global Navigation Satellite System (GNSS) and additional sensors. One of the precise navigation techniques in GNSS, the real-time kinematic (RTK) technique, is well known. In this method, once the correct integer ambiguities are found in the carrier phase observation data, position can be determined to within 10 cm. In particular, the advent of QZSS and BeiDou satellites can increase the availability of RTK-GNSS (relative to RTK using only GPS). It is understood that the increasing availability of RTK-GNSS will improve the performance of the integration of GNSS with additional sensors because the errors due to the inertial measurement unit (IMU) accumulate as time goes on. On the other hand, GNSS tends to suffer from multipath errors, especially in urban environments. To overcome this problem, a method was developed for improving RTK-GNSS using a low-cost IMU and conventional vehicle speed sensors. In this study, the quality of the complete observation data was assessed based on the carrier-to-noise ratio and satellite elevation angle, and the least-squares ambiguity decorrelation adjustment method and the ratio test were used to obtain fixed positions. We used speed information obtained from Doppler measurements as an alternative source of information; information from the IMU and vehicle speed sensor (integrated with the RTK-GNSS via a Kalman Filter) was used when there were no visible satellites. We also used the IMU and vehicle speed sensors to detect wrong fixes in the RTK-GNSS. A position and orientation system for land vehicles (Applanix) was used to estimate the reference positions. During GNSS outages, it is important to accurately determine the last heading of the car for precise navigation. In this study, it was found that GNSS Doppler-based direction data are required to obtain better direction information. The results of the experiment demonstrate that our proposed method is, to some extent, beneficial as an alternative to the conventional RTK-GPS in an urban environment.

AB - The increasing demand for navigation and automation has led to the development of a number of accurate and precise navigation applications that make use of the Global Navigation Satellite System (GNSS) and additional sensors. One of the precise navigation techniques in GNSS, the real-time kinematic (RTK) technique, is well known. In this method, once the correct integer ambiguities are found in the carrier phase observation data, position can be determined to within 10 cm. In particular, the advent of QZSS and BeiDou satellites can increase the availability of RTK-GNSS (relative to RTK using only GPS). It is understood that the increasing availability of RTK-GNSS will improve the performance of the integration of GNSS with additional sensors because the errors due to the inertial measurement unit (IMU) accumulate as time goes on. On the other hand, GNSS tends to suffer from multipath errors, especially in urban environments. To overcome this problem, a method was developed for improving RTK-GNSS using a low-cost IMU and conventional vehicle speed sensors. In this study, the quality of the complete observation data was assessed based on the carrier-to-noise ratio and satellite elevation angle, and the least-squares ambiguity decorrelation adjustment method and the ratio test were used to obtain fixed positions. We used speed information obtained from Doppler measurements as an alternative source of information; information from the IMU and vehicle speed sensor (integrated with the RTK-GNSS via a Kalman Filter) was used when there were no visible satellites. We also used the IMU and vehicle speed sensors to detect wrong fixes in the RTK-GNSS. A position and orientation system for land vehicles (Applanix) was used to estimate the reference positions. During GNSS outages, it is important to accurately determine the last heading of the car for precise navigation. In this study, it was found that GNSS Doppler-based direction data are required to obtain better direction information. The results of the experiment demonstrate that our proposed method is, to some extent, beneficial as an alternative to the conventional RTK-GPS in an urban environment.

KW - Loose coupling

KW - Precise positioning

KW - RTK-GNSS

UR - http://www.scopus.com/inward/record.url?scp=84953334827&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953334827&partnerID=8YFLogxK

U2 - 10.1587/transfun.E99.A.217

DO - 10.1587/transfun.E99.A.217

M3 - Article

VL - E99A

SP - 217

EP - 224

JO - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

JF - IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences

SN - 0916-8508

IS - 1

ER -